首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以典型生物质中的K、Na碱金属为催化剂,贵州褐煤为原料,水蒸气为活化剂,利用物理活化法制备活性炭.采用盐酸和氟硅酸混合液联合除灰,当浓盐酸和氟硅酸的体积比为1 ∶ 1,脱灰温度为70℃时,脱灰率达85.7%.最佳活化温度及时间均为玉米秸秆<核桃壳<稻壳,与生物质中K、Na碱金属含量的高低顺序相反.生物质添加量过低,催化...  相似文献   

2.
KOH活化制备脱水污泥活性炭   总被引:2,自引:0,他引:2  
以污水处理厂脱水污泥为原料,采用KOH化学活化工艺制备污泥活性炭,研究了碱泥比、活化剂浓度、活化温度及活化时间等因素对活性炭碘吸附值的影响。结果表明,最优的污泥活性炭制备条件为碱泥比3,活化剂浓度40%,活化温度500℃,活化时间60 min。用该条件下制备的污泥活性炭处理电镀废水,其对重金属吸附去除效果良好,平均去除率可以达到73.46%。  相似文献   

3.
以污水处理厂脱水污泥为原料,采用KOH化学活化工艺制备污泥活性炭,研究了碱泥比、活化剂浓度、活化温度及活化时间等因素对活性炭碘吸附值的影响。结果表明,最优的污泥活性炭制备条件为碱泥比3,活化剂浓度40%,活化温度500℃,活化时间60 min。用该条件下制备的污泥活性炭处理电镀废水,其对重金属吸附去除效果良好,平均去除率可以达到73.46%。  相似文献   

4.
以生物质炭为原料,采用氯化锌活化制备高比表面积微孔生物质活性炭,研究了浸渍比、活化剂浓度、活化温度与活化时间等条件对生物质活性炭吸附性能的影响,利用氮气吸附脱附、扫描电子显微镜、傅里叶红外光谱、X射线衍射等技术对生物质活性炭表面微观结构、形貌特征及化学结构进行了分析。结果表明,制备生物质活性炭的适宜工艺条件为:浸渍比为3,活化剂质量分数为40%,活化温度为600℃,活化时间为90min。在该条件下制备的生物质活性炭对亚甲基蓝的吸附值为213mg/g,超过国家水处理用活性炭一级品标准。经测试生物质活性炭的BET比表面积高达631.2m2/g,平均孔径2.23nm,总孔容为0.352cm3/g;孔隙结构发达,孔径分布狭窄,孔形状为排列整齐的蜂窝状结构,含有大量的微孔,84.4%的孔集中在2nm以内;表面存在醇羟基、羰基、醚、酚等含氧官能团。  相似文献   

5.
利用生物质废料——棕榈壳,采用不同的浸渍方法制备高效活性炭。详细探讨了活化温度和浸渍剂(氢氧化钠)浓度对活性炭性能的影响。采用固定床吸附二氧化硫气体,评价了制备样品的吸附能力。还开展了解吸过程的研究,证明了二氧化硫与活性炭表面之间发生的化学吸附或化学反应。研究表明,采用前期浸渍方法制备活性炭时,原料表面的氢基团被钠置换,形成交联体,从而可获得较高的活性炭收率。而且,这些钠离子在二氧化碳活化阶段还起到催化作用。采用中期浸渍方法,氢氧化钠脱水后生成单质钠,夹杂在碳层中有利于微孔的形成,活化时与二氧化碳生成碳酸钠,可防止试样的过度烧失。采用后期浸渍方法时,由于氢氧化钠颗粒阻挡了活性炭的微孔通道,改变了活性炭的结构特性。但附着的氢氧化钠可通过生成亚硫酸钠,提高对二氧化硫的除去效果。  相似文献   

6.
研究了污水处理厂污泥在制备泥质活性炭过程中的热解机理,利用热重(TG)分析仪和非等温技术对活化污泥的热解动力学进行了系统研究,分别对活化污泥低温热解段和中温热解段热失重微分(DTG)曲线峰值前后求解极限动力学参数和热解机理函数,结合Flynn-Wall-Ozawa法和Coats-Redfern法,采用双外推法确定了活化污泥的最概然热解机理函数. 结果表明,低温热解段DTG曲线峰值前后两部分的极限动力学参数反应活化能E和频率因子A分别为Ea?0=32.53 kJ/mol, lnAb?0=4.37;Ea?0=39.7 kJ/mol, lnAb?0=3.94(a为样品转化率,b为升温速率);中温热解段DTG峰值前后两部分的极限动力学参数分别为Ea?0=130.24 kJ/mol, lnAb?0=19.10;Ea?0=150.14 kJ/mol, lnAb?0=17.13. 活化污泥热解机理满足四阶段热解机理模型,热解机理依次为Mampel-Power法则(n=1/3)、3级化学反应、2级化学反应、Mampel-Power法则(n=3/2).  相似文献   

7.
以城市污水厂二沉池污泥为主要原料、固体ZnCl2为活化剂,添加一定量锯末,在高温管式炉中采用化学活化法制备污泥活性炭,通过单因素实验考察了锯末添加率、盐料比、活化温度、活化时间对污泥活性炭吸附性能的影响. 结果表明,锯末添加量为20%、盐料质量比为2.0、活化温度为550℃、活化时间为15 min时,所得活性炭碘吸附性能最优,达679.25 mg/g;污泥活性炭具有发达的孔结构,其比表面积达609.68 m2/g,总孔容为0.51 cm3/g,平均孔径为3.51 nm.  相似文献   

8.
李栋  汪印  杨娟  姚常斌  苏宏  许光文 《化工学报》2013,64(9):3338-3347
分别以稻壳、木屑及褐煤为原料用水蒸气活化法制备了活性炭,比较了所得活性炭的吸附性能和炭化料的反应活性,探明了造成不同原料活化特性差异的原因。结果表明,活化过程中生物质原料的反应活性优于褐煤,炭化料的活化速率遵循脱灰稻壳>木材炭化料>稻壳炭化料>褐煤炭化料。通过对炭化料进行元素分析、气化反应活性分析、BET、SEM、XRD、FTIR、XPS等物理和化学性质的表征,揭示了不同原料表现出不同活化特性的原因。结果表明,在相同炭化和活化条件下,原料挥发分越高,灰分越低,炭化料有机含氧量越高,则水蒸气的活化速率越快,更容易在短时间内制备出高性能的活性炭。  相似文献   

9.
以城市污水处理厂二沉池脱水污泥为原料,钛白废酸为活化剂,制备污泥活性炭(SAC),以H_2O_2为改性剂对SAC进行改性处理制备MAC。研究了改性剂质量分数、改性时间对吸附效果的影响,通过单因素实验得出最佳改性参数为:改性质量分数为10%、改性时间为60 min;该条件下,MAC的碘吸附值为493.40 mg/g、比表面积为1 021.45 m2/g、总孔容为0.622 8 mL/g、含氧官能团为1.792 5 mmol/g,分别较改性前提高了21.4%、35.5%、30.9%和8.44%。将MAC用于屠宰废水的处理,结果表明,当MAC质量浓度为12 g/L、振荡时间为50 min、pH维持不变时,屠宰废水中COD和TP的去除率分别为90.7%和98.5%。MAC对屠宰废水中COD的吸附符合Freundlich等温模型和准二级动力学模型。  相似文献   

10.
以城市污水厂的剩余污泥为原料,采用不同活化方法制备活性炭吸附剂,并对影响活化产物吸附性能的因素进行了研究。结果表明,化学活化法制备的活性炭污泥吸附剂性能良好,其最佳制备条件为:活化剂ZnCl2与H2SO4的浓度均为5mol/L(ZnCl2与H2SO4的复配比例为2:1),活化温度550℃,固液比1:2.5,活化时间2h。  相似文献   

11.
污泥是污水处理的副产物,若不及时妥当的进行处理,不仅是对资源的浪费,同时也会造成严重的环境污染。近年来,对于污泥的资源化利用的研究越发热门。本文综述了污泥现状及特点、传统污泥处理办法及其优缺点、利用城市剩余污泥制备活性炭吸附剂的技术,如:碳化法、物理活化法、化学活化法、微波法等,重点阐述了不同改性剂所改性的污泥活性炭对不同污水中的重金属、COD等的吸附净化性能及其应用研究进展,为提高污泥活性炭的吸附效果的作出进一步改进。  相似文献   

12.
以玉米秸秆酸水解残渣为原料、CO2为活化剂,制备了一系列活性炭,采用正交试验方法分析了原料颗粒大小、CO2/N2体积比、活化温度、活化时间4个因素对生物质水解残渣原料活性炭的比表面积、孔径和得率的影响。正交试验结果表明,活化温度和CO2/N2体积比是影响该类活性炭吸附性能的主要因素。制备的活性炭产品最大比表面积达到845.4m2/g,对应的制备工艺:原料颗粒50目、CO2/N2体积比1∶1、活化温度1000℃、活化时间210min。  相似文献   

13.
磷酸炭化-活化法制备污水厂污泥活性炭工艺   总被引:1,自引:0,他引:1  
研究了以污水厂污泥为原料、H3PO4为活化剂,采用炭化-活化法制备污泥活性炭,探讨了炭化温度、炭化时间、酸洗浓度、活化温度、活化时间的最佳工艺条件以及各因素对活性炭碘值的影响。结果表明:活化温度对碘值的影响最大,其次是炭化温度和炭化时间。酸洗浓度和活化时间对碘值的影响则比较小。最佳工艺条件为:炭化温度350 ℃、炭化时间50 min、酸洗浓度25%、活化温度380 ℃、活化时间50 min。该条件下可得到产率为48%、碘值为585.1 mg/g的活性炭。研究证实,污泥制得的活性炭可以用于处理难以降解的染料废水,当取0.5 g污泥活性炭处理100 mL废水时其处理程度可达到99.97%。  相似文献   

14.
文章主要介绍了利用生物质为原料制取活性炭的三种方法—物理活化法,化学活化剂活化法和化学物理活化法,并且分析了三种制备方法的活化机理。目前,利用生物质制备活性炭的研究日趋成熟,有的已投入应用,这种有效的变废为利的方法前途甚广。  相似文献   

15.
探索枣核粉木质活性炭制取的新方法,深入研究大枣核的利用价值。以50%氯化锌为活化剂,用煅法制备活性炭。在煅制时间为25 min时,制备活性炭性能最佳,产率为45.4%,碘吸附值为891.69 mg/g,亚甲基蓝脱色力为278.65 m L/g。煅法制备活性炭工艺简单易行,成品性质稳定。  相似文献   

16.
姚承  王菲  陈诺  张路遥  陈曦 《应用化工》2023,(4):999-1004
以生物质粉末代替部分煤制备出煤-生物质活性炭,并对主要影响因素进行了研究。结果表明,煤与生物质比例3∶7,碱炭比(纯KOH与干燥物料的比例)2.0,活化温度800℃,活化时间30 min,制备的活性炭比表面积(BET)为719.67 m2/g,总孔容0.291 cm3/g,活性炭以微孔为主,其平均孔径为1.835 nm,对亚甲基蓝的最大吸附容量达到731.79 mg/g。  相似文献   

17.
探索枣核粉木质活性炭制取的新方法,深入研究大枣核的利用价值。以50%氯化锌为活化剂,用煅法制备活性炭。在煅制时间为25 min时,制备活性炭性能最佳,产率为45.4%,碘吸附值为891.69 mg/g,亚甲基蓝脱色力为278.65 m L/g。煅法制备活性炭工艺简单易行,成品性质稳定。  相似文献   

18.
以污泥为原料,商品TiO_2为光催化剂,KOH为活化剂,采用一步法制备KOH活化污泥基活性炭负载TiO_2催化剂,并以亚甲基蓝(MB)为目标污染物进行光催化降解实验。结果表明,KOH活化污泥基活性炭负载TiO_2催化剂最佳制备条件为:TiO_2投加量为2%,KOH浓度为2 mol/L,固液比为1∶1.8 g/mL,升温速率为6℃/min,热解温度为550℃,热解时间为50 min。在pH为8,催化剂投加量为1.8 g/L,光照时间为180 min时,对MB光去除率达到了98.33%。通过X-射线衍射(XRD)、电子扫描显微镜(SEM)及傅里叶红外光谱(FTIR)表征论证了该催化体系。  相似文献   

19.
20.
以木屑为原料,磷酸为活化剂,通过单因素实验,研究了原料种类、预处理方式、液固比、活化温度对生物质活性炭得率和吸附性能的影响。结果表明,影响生物质活性炭得率和吸附性能最重要的因素是磷酸溶液与木屑的液固比和活化温度;得到了活性炭最佳制备条件:液固比7、50℃搅拌3 h、450℃活化2 h。该条件下制备的生物质活性炭得率达到40%以上,对湛江松脂加工废水COD降低值在7700 mg/L以上。该活性炭具有较好的吸附性能,为农林废弃物木屑的高效利用提供了有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号