首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用熔融退火技术制备了ZnO-Sb_2O_3-P_2O_5:Eu~(3+)荧光玻璃,采用不同的处理制度对荧光玻璃进行热处理,制备了ZnO-Sb_2O_3-P_2O_5:Eu~(3+)微晶玻璃。利用差热分析、X射线衍射(XRD)分析、扫描电子显微镜(SEM)以及荧光光谱等手段分析了微晶玻璃的晶相组成、显微结构以及热处理工艺对荧光性能的影响。结果表明,Eu~(3+)掺杂ZnO-Sb_2O_3-P_2O_5微晶玻璃,其激发光谱主要分布在350~550 nm,激发峰位于364、384、395、466、530 nm,主激发峰位于395 nm处;在395 nm激发下,发出红光,观测到其5个发射峰分别位于在578 nm (~5D_0→~7F_0)、592 nm (~5D_0→~7F_1)、614 nm (~5D_0→~7F_2)、654 nm (~5D_0→~7F_3)和702 nm (~5D_0→~7F_4);在所研究范围内,随着热处理温度的升高,Eu~(3+)在微晶玻璃样品中的发射峰强度先增大后减小,但均大于未热处理的微晶玻璃;在510℃下处理2 h制得的微晶玻璃发射强度最高。  相似文献   

2.
用高温熔融法制备了掺杂Sm2O3的CaO-B2O3-SiO2(CBS)发光玻璃材料,采用示差扫描量热法(DSC)确定了合适的核化/晶化温度制度.在不同核化/晶化温度制度下制备得到了微晶发光玻璃,并对其结构及光谱学特性进行了研究.X射线衍射(XRD)分析表明:经微晶化的发光玻璃出现了晶体的尖锐衍射峰,随着温度的升高,晶体类型和晶粒尺寸均发生变化.光谱学测试表明:Sm掺杂微晶发光玻璃在404nm激发下出现Sm3+的特征发射峰,峰值波长分别位于566nm、603nm和650nm;发光玻璃的荧光发射峰强度和荧光寿命均表现出随热处理温度的升高先增大后减小的变化,在核化/晶化温度为750℃/800℃条件下制备的微晶玻璃的荧光发射强度和荧光寿命均达到最大值,随着核化/晶化温度的进一步升高,样品的荧光强度和荧光寿命均有所下降.  相似文献   

3.
采用高温固相法制备了Ca_(1.9)(Si_(0.8)P_(0.2))O_4:Re(Re=Eu~(2+),Eu~(3+))系列发光材料,并对光致发光性能的影响因素进行了探究,主要包括煅烧温度、煅烧时间、稀土离子掺杂浓度等。经表征分析可知,制备Ca_(1.9)(Si_(0.8)P_(0.2))O_4:Eu~(2+)样品工艺条件确定为:煅烧温度、时间及掺杂Eu~(2+)浓度分别为1 275℃、4 h及4%。此样品最强激发波长为374 nm,最强发射波长为500 nm。色坐标结果显示样品发光处于绿光区域。制备Ca_(1.9)(Si_(0.8)P_(0.2))O_4:Eu~(3+)样品工艺条件确定为:煅烧温度、时间及掺杂Eu~(3+)浓度分别为1 300℃、4 h及6%。此样品最强激发波为394 nm,最强发射波长为589 nm。色坐标结果显示样品发光处于红光区域。  相似文献   

4.
用高温熔融法制备了Eu2O3单掺和Ce/Tb/Eu三元共掺杂的CaO-B2O3-SiO2(CBS)发光玻璃材料,并使用荧光分光光度计和CIE色度坐标对其结构以及发光特性进行了研究.光谱分析结果表明:在394nm激发下,Eu2O3单掺杂的CBS发光玻璃的发射光谱中出现了Eu3+的特征发射峰.这些发射峰主要起源于Eu3+中的4f电子的f-f跃迁;在374nm激发下,三元共掺杂发光玻璃的发射光谱中同时观测到了起源于Ce3+、Tb3+和Eu3+的蓝色、绿色和红色的三基色发射,这些发射可进一步混合成为白光发射.此外,Ce/Tb/Eu三元共掺杂发光玻璃的发光颜色,随着Eu2O3含量的增加从蓝光逐渐过渡到白光,这显示出了发光颜色的可调节性,极大地扩展了其在白光发光领域中的应用.  相似文献   

5.
采用水热法制备了(Gd_(1-x)Eu_x)_2Zr_2O_7红色荧光粉。通过X射线衍射、扫描电镜、荧光光谱等手段研究了稀土锆酸盐(Gd_(1-x)Eu_x)_2Zr_2O_7的微观形貌及光至发光性能。X射线衍射结果证实,所得产物为有序的烧绿石结构,荧光光谱分析表明,(Gd_(1-x)Eu_x)_2Zr_2O_7荧光粉的最强发射峰在613nm处,归属于Eu~(3+)的5 D0→7F2电子跃迁产生的红光发射,当Eu~(3+)的最大掺杂浓度为4%时,荧光粉的发光强度呈现最大值。随着掺杂浓度的继续升高,发光强度逐渐降低,归因于出现了浓度猝灭。  相似文献   

6.
为了探究稀土离子掺杂铝硅酸盐的光温特性,本文采用燃烧合成法制备了系列荧光粉材料Ca_(1-3x/2)Al_2Si_2O_8:xEu~(3+)。X射线衍射结果表明掺杂Eu~(3+)离子不会改变基质CaAl_2Si_2O_8的晶体结构。荧光光谱结果表明该荧光粉在近紫外光区域具有较强吸收,当被波长为393 nm的近紫外光激发后,其最大特征发射峰为611 nm,且Eu~(3+)离子的最佳掺杂浓度为0.05。利用上升时间测温法研究了 CaAl_2Si_2O_8:Eu~(3+)荧光粉的光温传感特性,结果表明:随着Eu~(3+)掺杂浓度的增加,上升时间单调递减,但当掺杂掺杂超过0.100时就会发生淬灭。Ca_(0.985)Al_2Si_2O_8:0.01Eu~(3+)的相对灵敏度随温度的升高先增大后减小,并在520 K时达到最大值(0.024 K~(-1))。上述研究表明该荧光粉具备优异的温度传感性能,在测温领域具有广泛的应用前景。  相似文献   

7.
通过水热法,按照不同的Gd~(3+)、Eu~(3+)浓度配比制备Gd_2O_3:Eu~(3+)荧光粉,在800°C热处理后,通过荧光光谱测试发现Gd~(3+)与Eu~(3+)浓度比为20∶1时候发光性能最优。在此基础上,研究了掺杂Li~+离子对Gd_2O_3:Eu~(3+)的结晶性能、晶粒形貌和发光特性的影响。以X射线衍射(XRD)、扫描电子显微镜(SEM)、发射光谱等手段表征材料性能。XRD测试结果表明:所得产物是立方晶系,扫描电镜分析产物主要有长片状和短片状两种形貌,短片状形貌Gd_2O_3:Eu~(3+)荧光粉的荧光强度更高。Li~+的掺入能提高Gd_2O_3:Eu~(3+)量子效率、增强Gd_2O_3:Eu~(3+)荧光强度、缩短荧光衰减时间。  相似文献   

8.
为提高磷酸钠钙红色荧光粉的发光强度,采用高温固相法制备了Na_(1.3)Ca_(0.4-x)Sr_xPO_4:0.3Eu~(3+)系列荧光粉,通过X-射线衍射仪(XRD)和荧光分光光度计分析该系列样品的物相结构、发光性能以及最佳掺杂浓度。XRD结果表明,Sr~(2+)取代Ca~(2+)占据中心格位,晶相有逐渐由NaCaPO_4向NaSrPO_4转变的趋势,结晶性能良好。荧光光谱分析表明,随着Sr~(2+)掺杂浓度的提高,在近紫外光区的395 nm和蓝色光区的465 nm处的激发峰强度均显著增强。由于掺杂离子之间电负性和离子半径的差异,导致电子云效应的形成和晶体场强度的降低,增大了~5D_0→~7F_2跃迁发射的能量,使得在618 nm处的发射峰强度明显提高,而且其峰位逐渐向短波长方向移动。当Sr~(2+)完全取代Ca~(2+)后,荧光粉发射强度提高了21%,表明Na_(1.3)Ca_(0.4-x)Sr_xPO_4:0.3Eu~(3+)是一种有望应用于白光发光二极管的红色荧光粉。  相似文献   

9.
利用水热法制备Eu~(3+)、Dy~(3+)双掺的NaY(WO_4)_2上转换荧光粉,通过XRD、SEM、FL对其进行表征.讨论不同水合温度、pH值和Dy~(3+)掺杂浓度以及聚乙烯吡咯烷酮的加入量对NaY(WO_4)_2:Eu~(3+)发光性能、晶体结构和形貌的影响,得到最佳发光性能的合成条件:水合温度180℃,pH为8,Eu~(3+)的掺杂浓度为0. 8%(摩尔分数),Dy~(3+)掺杂浓度为0. 2%(摩尔分数),聚乙烯吡咯烷酮加入比例为1∶1(摩尔比).通过793 nm光激发NaY(WO_4)_2:Eu~(3+),Dy~(3+)上转换荧光粉,观察到596 nm橙光发射峰、619 nm红光发射峰分别对应于Eu~(3+)的~5D_0→~7F_1、~5D_0→~7F_2电偶极跃迁,并研究Eu~(3+)-Dy~(3+)之间的能量传递过程.  相似文献   

10.
采用液相混合-固相反应的方法,以硼氢化锂、非晶硅、金属Ca、Eu为原料,经1300℃保温4 h合成Ca_2Si_5N_8:Eu~(2+)荧光粉。采用X射线衍射仪(XRD)、透射电子显微镜(TEM)和荧光(PL)光谱仪等表征方法分析样品的物相组成、微观形貌以及激发和发射光谱等特性。研究结果表明:B~(3+)/Li~+共掺杂并未改变Ca_2Si_5N_8:Eu~(2+)荧光粉的晶体结构,合成样品除了主相为单斜晶系Ca_2Si_5N_8:Eu~(2+)外,还存在包覆在Ca_2Si_5N_8:Eu~(2+)荧光粉表面的BN相;B~(3+)/Li~+共掺杂Ca_2Si_5N_8:Eu~(2+)荧光粉的发光强度提高了2.27倍,在465 nm的蓝光激发下,发射峰位于604 nm。  相似文献   

11.
用高温熔融法制备了稀土Ce、Tb和Sm单掺杂和三元共掺杂的CaO-B2O3-SiO2(CBS)发光玻璃材料,并使用荧光分光光度计和CIE色度坐标对其光谱学和发光特性进行了研究.光致发光图谱表明,单掺杂Ce、Tb和Sm的发光玻璃在光激发下分别出现了稀土离子Ce3+、Tb3+和Sm3+的特征发射峰;同时,在374nm激发下,Ce/Tb/Sm三元共掺杂CBS发光玻璃的发射光谱中同时观测到了蓝光、绿光和红橙光的发射带,这些发射带的混合实现了白光的全色发射显示.此外,三元共掺杂发光玻璃显示出了发光颜色随稀土元素共掺杂比的可调节性,极大地扩展了其在白光发光二极管中的应用.  相似文献   

12.
采用高温固相法,以糊精为还原剂,在温度为1 150℃、N2-H2(10∶1)的还原气氛中合成了S、Dy~(3+)掺杂的SrS:Eu~(2+)红色荧光粉材料。采用X射线衍射分析(XRD)、荧光分光光度计等对其物相与光学性能进行表征。结果表明,样品在蓝光(波长498nm)激发下,添加的S的质量分数为2%时,SrS:Eu~(2+)荧光粉发出的红光强度最强;Dy~(3+)的掺杂摩尔分数为1%时,试样发出的红光最强。其激发光谱是400~600nm的宽带激发光谱。  相似文献   

13.
采用高温固相反应在还原气氛中合成Ba_(1.3)Ca_(0.7-y-z)(Al_xSi_(1-x))O_4:yEu~(2+),zMn~(2+)白光荧光粉.研究硅铝摩尔比变化对荧光粉晶体结构和光谱性能的影响.XRD结果表明:改变硅铝摩尔比对荧光粉晶体结构基本无影响,晶相结构为Ba_(1.3)Ca_(0.7)SiO_4;荧光光谱显示在277 nm紫外光激发下,Eu~(2+),Mn~(2+)共掺杂的荧光粉的发射光谱覆盖425~550 nm蓝绿光波带和550~650 nm橙红光波带,最大发射峰位于454、593 nm,这两个发射宽带组合形成白光.  相似文献   

14.
通过对ZnWO_4:Cr~(3+)激光晶体发光特性的研究发现,随掺杂浓度的变化,荧光强度明显改变,在掺人Cr_2O_3浓度为0.005%和0.08%时有两个峰值;并发现低浓度与高浓度的激发峰分别为622nm和608nm。激发波长变化时,荧光强度发生改变,用532nm激发时,仍有较强的荧光。  相似文献   

15.
实验采用水热法制备了发光性能优越的Yb~(3+),Tm~(3+)掺杂的BaWO_4纳米晶.讨论了不同掺杂比例样品的发光性能,确定了最佳制备工艺.运用了X射线衍射、扫描电镜对制备的样品形貌结构进行了表征,发现含有稀土离子Yb~(3+),Tm~(3+)掺杂的BaWO_4纳米晶体呈现四方晶系结构,并且粒径低于100 nm,分散性较好.使用980 nm半导体激光器作光源,并且以Hitachi F-4500分光光度计对样品的发射光谱进行了测量,可以发现:实验制得的纳米晶的发射峰为457 nm、478 nm和650 nm,各个发射峰分别与Tm~(3+)离子~1D_2→~3F_4、~1G_4→~3H_6和~1G_4→~3F_4的跃迁相对应.当Yb~(3+)/Tm~(3+)的值为7 1,Tm~(3+)离子的浓度值为1.0 mol%时,样品的发光效果最佳,并且详细讨论了上转换发光机制.  相似文献   

16.
为了提高红色荧光粉的发光强度和量子效率,采用水热法制备复合基质Gd_xY_((2-x))O_3:Eu~(3+)荧光粉。首先对制备出的Y_2O_3:Eu~(3+)和Gd_2O_3:Eu~(3+)荧光粉进行发光强度分析,得到稀土基质离子和Eu~(3+)的最佳掺杂比例;在此基础上制备Gd_xY_((2-x))O_3:Eu~(3+)荧光粉,研究不同的x值对Gd_xY_((2-x))O_3:Eu~(3+)荧光粉的晶体结构、表面形貌、发光强度及量子效率的影响。采用X射线衍射仪、场发射扫描电镜和荧光光谱仪等对样品进行表征。结果表明:选用稀土基质离子和Eu~(3+)的最佳掺杂比例为25∶1时制备的复合基质Gd_xY_((2-x))O_3:Eu~(3+)荧光粉,在x为0.5时,该荧光粉的发光强度和量子效率均达到最大值。与Y_2O_3:Eu~(3+)荧光粉对比,发光强度提高57.22%,量子效率提高90.20%;与Gd_2O_3:Eu~(3+)荧光粉对比,发光强度提高21.29%,量子效率提高46.93%。  相似文献   

17.
采用溶胶-凝胶法与燃烧法相结合制备了YAG:Dy~(3+)粉体,研究了不同Dy~(3+)掺杂浓度对YAG:Dy~(3+)晶体结构和发光特性的影响。XRD结果表明,YAG:3%Dy~(3+)和YAG:4%Dy~(3+)样品均保持了基质YAG的晶相结构。在365nm光激发下,常温下两种掺杂浓度样品的光致发光峰主要集中在可见光区范围,其中掺杂浓度为4%的样品的发光强度要高于浓度为3%的样品。YAG:4%Dy~(3+)样品变温光致发光特性结果表明,在373K~773K温度范围内,发射峰的峰位没发生变化,由于热淬灭效应,573nm和478nm的发光峰的发光强度随温度升高而整体降低,而455nm处的发光峰强度随温度升高而整体升高。计算了455nm和478nm两个发光峰的荧光强度比,并将其与温度关系进行了拟合,得到了Dy~(3+)离子的热耦合能级~4I_(15/2)→~6H_(15/2)和~4F_(9/2)→~6H_(15/2)的有效能级差ΔE为670cm~(-1)。YAG:4%Dy~(3+)的测温绝对灵敏度在373K达到最大值0.00694K~(-1)。  相似文献   

18.
通过冷却熔融法制备出铋掺杂的硅酸盐玻璃,这些玻璃具有覆盖1 000-1 600 nm波段的超宽带红外发光,荧光的半高宽(FWHM)超过200 nm;荧光寿命超过400μs;荧光强度随着玻璃碱性的增加而减弱.荧光峰随碱性氧化物的种类不同而移动.除了红外发光,还观察到了发光峰在640 nm左右的可见发光.640 nm的可见发光和红外发光有可能来源于同一种发光离子.认为红外发光源于低价态铋离子.铋掺杂的硅酸盐玻璃由于它们的超宽带特性,有可能成为超宽带光纤放大器的增益介质.  相似文献   

19.
采用空气气氛和还原气氛,制备了稀土Eu2O3、Dy2O3掺杂的铝硅酸盐玻璃,利用X射线衍射仪和荧光光谱仪对样品进行了测试,分析了长余辉发光玻璃的发光机理.结果表明:空气气氛条件下制备掺Eu3 和Dy3 的铝硅酸盐玻璃样品均不具备长余辉发光性能,经还原气氛处理后,玻璃样品具有长余辉发光现象,且陷阱能级较深,在紫外光激发下样品具有很好的长余辉发光特性和更高的发光亮度,样品的发光持续时间长达12h以上.  相似文献   

20.
采用氨热法,以金属Ca、Eu、非晶Si以及硼烷氨为原料,液氨为介质均与混合,经1230℃保温5h合成h-BN包覆的Ca_2Si_5N_8:Eu~(2+)红色荧光粉。X射线衍射(XRD)测试结果表明:是否掺杂硼并没有改变Ca_2Si_5N_8晶体结构,但掺杂硼的产物除存在Ca_2Si_5N_8主相外,还包含BN相;透射电子显微镜(TEM)分析结果得到:BN相呈透明状包覆在Ca_2Si_5N_8外表面,并与Ca_2Si_5N_8相呈共格相界;荧光光谱(PL)测试结果表明:硼掺杂Ca_2Si_5N_8:Eu~(2+)荧光粉的发光强度提高了约1.1倍,发射光谱红移20nm,其激发峰在465nm,发射峰位于590nm,硼掺杂有助于提高Ca_2Si_5N_8:Eu~(2+)荧光粉的发光性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号