首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 703 毫秒
1.
为研究不同软岩料分区范围下湿化及流变特性对面板堆石坝的应力及变形影响。查找、对比软岩料的湿化及流变模型,分析和研究已有的软岩料湿化及流变特性的有限元实现方法。以某面板堆石坝为例,按软岩料的不同填筑范围制定两种计算方案,分别进行大坝的三维有限元应力变形计算,然后通过对比分析两种计算方案的计算结果,系统总结软岩料不同填筑范围对面板堆石坝应力变形的影响规律。结果表明:随着软岩料利用范围的扩大,坝体的流变范围也随之扩大,相应的垂直位移、水平位移位移及面板的挠度也随之增大。因此,在实际面板砂砾石坝工程设计中,进行软岩料的扩大利用时需要合理的制定软岩料填筑范围。  相似文献   

2.
砂砾石面板堆石坝流变特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以乌鲁瓦提砂砾石面板堆石坝为例,分析砂砾石面板坝在考虑流变和不考虑流变情况下坝体在竣工期和蓄水期的位移和应力分布规律,总结流变效应对坝体应力和变形的影响。计算结果表明:计入流变影响后坝体竖向位移和水平位移较未计入流变效应结果都有所增大,大主应力和小主应力也有所增加;从坝体沉降历时曲线和流变附加节点荷载计算结果可以看出,砂砾石料的变形主要在施工期完成,在蓄水后一年流变变形基本结束坝体位移趋于稳定,且计入流变的计算结果与坝体实际检测结果相近。因此,在进行砂砾石面板堆石坝坝体应力变形计算时考虑砂砾石的流变效应是必要的。  相似文献   

3.
面板坝具有完整型好,适应性强,抗震能力突出等特点,目前在国内外大坝建设中占有很大比例。随着越来越多的工程中应用砂砾石和软岩等材料,适宜的应力变形问题对大坝的安全施工、运行具有及其重要的意义。文章研究面板砂砾石坝在渗透变形的条件下,对大坝进行三维有限元分析,得出坝体在竣工期和蓄水期的不同工况下的位移和应力变化。通过计算结果为高面板砂砾石坝的流变效应和抗震设计提供必要的理论依据和工程参考数值,所获取的计算成果对类似工程的设计具有一定的参考应用价值。  相似文献   

4.
基于三维有限元数值模拟技术,对某沥青混凝土心墙坝进行了应力及变形分析.计算中采用Duncan-Chang E-B模型作为坝体及心墙材料的本构模型,考虑蓄水后心墙上游堆石料的湿化效应,对大坝填筑和水库蓄水过程进行模拟,得到了竣工期及蓄水期两种工况下沥青混凝土心墙和坝体的位移、应力分布规律.计算结果表明,坝体及心墙的应力变形值均处在合理范围之内,坝体填料和心墙材料满足强度要求,为结构设计、施工提供了参考依据.  相似文献   

5.
采用邓肯-张E-B非线性弹性模型,利用数值计算方法,对某堆石坝在施工和蓄水期的应力、变形进行了计算分析,得出了堆石体和面板的最大变形值及其发生位置。结果表明:蓄水对混凝土面板堆石坝的水平位移影响较小;坝体在竣工期和正常蓄水期两种工况下面板的最大挠度均发生在上游坝坡和堆石压重体的交界处,应力总体较小,大坝稳定性良好。  相似文献   

6.
以某已建工程为例,基于邓肯E-B材料本构模型,对混凝土面板堆石坝次堆石区采用软岩料填筑和硬岩料填筑两个方案进行三维有限元分析,分别获得软岩料填筑和硬岩料填筑时坝体应力变形的分布与变化规律。通过有限元计算分析,可以看出采用软岩填筑面板坝是可行的。  相似文献   

7.
魁龙水库大坝为面板堆石坝,坝址区附近分布地层为第三系砾岩,属软岩。筑坝材料经技术经济比较后选择采用‘砾岩+部分灰岩’料填筑方案,并开展了相关试验工作和坝体结构有限元分析计算,提出大坝各分区填筑参数,对大坝结构安全提供可靠依据。从施工期和蓄水后的观测数据分析,坝体沉降、变形及位移等符合同类坝型特点。  相似文献   

8.
针对软岩料填筑面板堆石坝问题,基于邓肯E-B材料本构模型,结合鱼跳水电站混凝土面板堆石坝,拟定了三种不同的软岩料利用范围方案,运用大型有限元软件,进行了各方案坝体应力变形的有限元计算。结果表明:坝体及面板的应力变形对于软岩料的利用范围较为敏感;实际工程设计时,可在大坝应力变形可承受的范围内,尽可能地扩大软岩料的利用范围,使坝体断面设计既安全可靠,又经济合理。  相似文献   

9.
以某已建工程为例,基于非线性邓肯E-B本构模型,建立了可考虑施工期坝面过水条件的面板堆石坝应力变形分析的三维有限元模型,对施工期坝面是否过水两种工况下面板堆石坝竣工期的应力变形进行了对比分析。结果表明:施工期临时断面是否过水对大坝竣工期应力变形的影响较小。因此,对面板堆石坝而言,采用坝面过水度汛方式是安全可行的。  相似文献   

10.
300 m级高堆石坝的流变变形不可忽略。对最大坝高达到312 m的双江口心墙堆石坝上下游坝壳料进行了流变试验,发展和完善了计算流变变形的数学模型并整理了相关计算参数,采用三维有限元方法分析了流变对大坝变形的影响。结果表明:(1)坝料流变引起的广义剪应变随应力水平的增加而增加,引起的体积应变增量随围压的增加而增加,亦随应力水平的增加而增加;(2)流变引起的变形增量在填筑与蓄水期为自上下游两侧向心墙方向挤压,而在运行期则是由心墙向上下游两侧挤压;(3)考虑流变变形后蓄水期坝体最大沉降增加约22%,而运行期的流变变形相对较小。  相似文献   

11.
针对重庆市金佛山混凝土面板堆石坝初步设计方案,通过静力平面应力变形分析计算,分析了坝体在竣工期、蓄水期的应力变形分布规律,重点研究了主堆石孔隙率、次堆石材料对面板和趾板的应力变形、周边缝变位等的影响,为选取主堆石孔隙率、次堆石区筑坝材料提供依据。计算结果表明,主堆石孔隙率采用20.1%和19.1%均可行,次堆石筑坝材料采用弱风化带粉砂岩∶页岩=7∶3和弱风化带粉砂岩∶页岩=5∶5均是可行的。但是相对于其他方案,采用主堆石孔隙率为20.1%,次堆石筑坝材料为弱风化带粉砂岩∶页岩=7∶3的方案,坝体、面板、趾板的应力变形较小。  相似文献   

12.
考虑后期变形影响的高面板堆石坝工作性态   总被引:1,自引:0,他引:1       下载免费PDF全文
由于面板堆石坝工作条件复杂,受到尾水位升降等干湿循环的影响会产生湿化变形;又由于堆石料处在高坝高应力状态下,会导致由颗粒破碎引起随时间变化的流变变形。认为高坝有限元计算必须考虑这两者引起的后期变形的影响。对某超高混凝土面板堆石坝进行了考虑后期变形与不考后期变形的对比计算,结果表明后期变形较大程度上改变了大坝的变形和应力,对面板变形和应力影响甚大。  相似文献   

13.
依据非线性弹性K-G模型理论对天池上水库面板堆石坝进行了应力变形分析。首先采用CAD图形和程序控制相结合方法建立坝体与地基模型,考虑了断层构造和岸坡变化,得到了较为精细的三维有限元模型。然后在模型计算中采用了施工逐级加载的方法对坝体进行了模拟,应用修正后的分级加载位移变形公式,对竣工期和正常水位蓄水期的应力变形进行三维有限元分析,得出了两种工况下断层对该高面板坝应力变形影响一般规律。  相似文献   

14.
中厚覆盖层上中低面板堆石坝应力变形分析   总被引:1,自引:0,他引:1  
在中厚覆盖层上修建中低面板堆石坝目前较为普遍,其应力变形特性与深厚覆盖层上修建的高面板坝有较大差异,因此有必要进行研究。利用目前应用较为广泛的邓肯-张E-B模型,采用二维有限元分析法针对位于宽河谷中的双溪口面板堆石坝竣工期及蓄水期的堆石体及面板的应力变形特性进行研究。结果表明:相比竣工期,蓄水期坝体沉降、向下游的水平位移、大坝大小主应力、应力水平及面板挠度均有所增加,其中以面板挠度及大坝水平位移增加最为明显,挠度增加了16.61 cm,水平位移增加约1倍,沉降增加幅度约为8%,大、小主应力增加10%~20%,应力水平增加约50%。大坝在竣工期及蓄水期的应力及变形均在允许范围内,大坝运行正常。  相似文献   

15.
采用基于增量法的非线性有限元分析方法,对某混凝土面板堆石坝坝体及面板在施工期和蓄水期的应力变形特性进行了分析、研究,给出了坝体各部分的应力、位移分布规律。本文的中点增量法具有分级迭代易于收敛、计算精度较高的优点,其计算成果说明此算法是有效的;该计算分析成果可以为实际工程的混凝土面板堆石坝设计、施工提供依据,对其它类似工程也具有一定的参考价值。  相似文献   

16.
为了优化设计和安全评价,对某300 m级超高直心墙堆石坝和作为比较方案的斜心墙堆石坝进行了三维有限元应力变形计算。对坝体堆石料采用邓肯张E-B非线性弹性模型,对高塑性黏土与混凝土结构接触面采用Goodman单元模型,分43级荷载对坝体的施工和蓄水过程进行模拟,比较分析两种坝型在蓄水期坝体和心墙的应力和变形性状。结果表明,相对直心墙方案,斜心墙方案计算所得坝体的最大水平位移相对较小,垂直沉降较大。斜心墙方案下心墙两岸坝肩处高应力水平区域有所减小,可以适当改善心墙上游面单元的应力和变形条件。斜心墙方案下心墙的拱效应相对较弱,其抗水力劈裂的性能稍好。  相似文献   

17.
为了定量分析堆石料分区及其力学特性差异对面板堆石坝变形的影响,采用非线性有限元法,对坝高200 m级的典型面板堆石坝开展竣工期、蓄水期和变形稳定期的变形计算,重点分析5种不同主、次堆石分区方案和4种不同主、次堆石料模量比方案对大坝变形的影响。通过变形分布规律和极值变化规律对比分析表明:不同主、次堆石区分界对坝体变形分布规律的总体影响较小,坝体沉降极值变化不超10%;蓄水期坝体最大流变约占最大坝高的0.14%;减小次堆石料模量,则坝体流变效应逐渐增强。  相似文献   

18.
为研究砂砾石料流变对面板砂砾石坝应力变形的影响规律,在对砂砾石料的流变机理及其分析方法进行分析与选择的基础上,以某高面板砂砾石坝为例,运用三维有限元法,按不考虑砂砾石料流变效应和考虑砂砾石流变效应两种计算方案,分别进行其应力变形的三维有限元计算,然后通过对计算方案所获计算结果的对比分析,系统总结砂砾石料流变对面板砂砾石坝应力变形的影响规律。结果表明:砂砾石料流变使得坝体的应力变形呈现逐渐增大的趋势;流变对于坝体向上游水平位移的影响最大,对坝体向下游水平位移和坝体竖向位移的影响次之,对面板挠度和面板顺坡向应力的影响则相对较小。因此,在实际面板砂砾石坝工程设计中,考虑砂砾石料的流变效应是十分必要的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号