首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的 研究单一反应器内硫自养反硝化同步脱氮除硫的启动方法 及过程,同时考察脱氮除硫效果.方法 选择厌氧生物滤池为生物反应器,采用普通厌氧消化污泥为接种污泥,以自配的含S2--S和NO3--N的废水为进水,进水容积负荷分别为0.24 kg/(m3·d)、0.105 kg/(m3·d),经过15 d的间歇运行和15 d的连续运行,对硫自养反硝化的启动过程进行研究.结果 经过30 d的运行启动,S2--S和NO3--N的去除率基本稳定在90%及80%以上,去除负荷分别为0.238 kg/(m3·d),0.093 3 kg/(m3·d),S0及NO2--N的生成率分别为75%与64%左右.结论 反应器在短时间内成功筛选并富集了硫自养反硝化菌,S2--S和NO3--N达到很高的去除负荷,硫自养反硝化反应器成功启动.  相似文献   

2.
为了探究硫自养反硝化滤池用于城镇污水处理厂中水的深度脱氮效能,通过中试实验模拟实际生产情况,以邯郸市东污水处理厂为研究对象,分析中试运行问题并核算运行成本。结果表明:中试系统处理规模为200 m3/d,直接运行成本为0.13元/m3;硝酸盐氮的去除率在98%以上,去除效果显著;能在不影响其他出水指标的情况下有效地降低出水总氮。  相似文献   

3.
在COD浓度为0,30,60,90 mg/L下,考察了异养耦合硫磺和黄铁矿为填料的自养反硝化工艺脱氮性能,同时探讨了异养及自养反硝化过程对氮去除的贡献率及其降解动力学.结果表明,当COD浓度为30 mg/L时,R1(硫磺/黄铁矿分层填装)和R2(硫磺/黄铁矿混合填装)的NO3--N去除率分别为90.51%和97.13%.随着COD浓度升高至90 mg/L,R1和R2进水中的NO3--N几乎被完全去除,且R2在不同高度下的脱氮性能均优于R1.由于COD为30 mg/L时可促进硫自养反硝化过程的脱氮效果,因此R1和R2出水SO42-浓度分别由158 mg/L和178 mg/L升至188 mg/L和192 mg/L;随着COD投加浓度提升至90 mg/L,实现了异养与硫自养反硝化的耦合,此时出水SO42-浓度分别降至114 mg/L和125 mg/L.物料平衡计算表明,当COD浓度大于60 mg/L时,异养反硝化对脱氮...  相似文献   

4.
针对自养反硝化技术常规滤料出水中SO42-浓度高、不能同步除磷的问题,通过批次实验探究复合矿源滤料自养反硝化(MSAD)的脱氮除磷性能。对矿源滤料硫铁矿(FeS2)和菱铁矿(FeCO3)在不同质量配比下脱氮除磷效果进行分析。结果表明,相比于单一FeS2为电子供体,复合矿源(FeS2和FeCO3)表现出更高的NO-3-N去除速率、较低的硫酸盐浓度和稳定的pH。在驯化结束后稳定运行的第4天,m(FeS2)∶m(FeCO3)=2∶1系统脱氮性能最佳,NO-3-N的去除率为93%; TN的去除率为86%;m(FeS2)∶m(FeCO3)=1∶1系统总磷去除效果达到最优(65%)。物种分析证明复合矿源中硫自养反硝化的微生物种类占主导地位。  相似文献   

5.
硫自养反硝化(SAD)是一种绿色低碳的污水脱氮技术,具有成本低、污泥产量少、无须外加有机碳源等优点,已成为污水脱氮技术研究的热点之一。阐述SAD填料组成与复合硫源填料的合成方法,归纳SAD固定床反应器和流化床反应器的结构及其适用条件,回顾SAD与电化学、异养反硝化、厌氧氨氧化耦合工艺等方面的研究进展,并总结SAD耦合技术的优缺点以及耦合工艺的脱氮特征。微生物的代谢功能是实现高效SAD的关键因素,列举不同代谢特性的SAD功能微生物种类,阐述代表性微生物ThiobacillusSulfurimonas在SAD过程中的反硝化特性及其生长条件。目前,SAD技术在填料、反应器和耦合工艺等方面取得显著进步,但仍面临诸多挑战,在SAD技术温度适应性、高处理负荷反应器设计以及工艺流程优化等方面进一步创新。  相似文献   

6.
目的 研究以硝酸氮和亚硝酸氮为电子受体时,污水中氮磷的去除效果.方法 采用两个厌氧/缺氧SBR反应器(1#和2#)处理配制的含磷污水,每个反应器的有效容积为16 L,反应周期为6.5 h,污泥龄为32 d,运行方式采用SBR反应器,一次集中进水-厌氧搅拌(2 h)-缺氧搅拌(4 h)-沉淀(0.5 h)一排水.在缺氧时段开始时,1#反应器一次性投加硝酸钠,2#反应器投加亚硝酸钠.每天运行两个周期.结果 反应器运行2~3周之后,可以维持比较稳定的同步脱氮除磷效果,反硝化除磷反应器启动成功.1#反应器总磷的平均去除率为69%,硝酸氮的平均去除率为89%,2#反应器总磷的平均去除率为75%,亚硝酸氮的平均去除率为91%.以硝酸氮为电子受体时,一部分硝酸氮转化成亚硝酸氮,进而两者共同发挥电子受体的作用,去除污水中的氮和磷.结论 硝酸氮和亚硝酸氮都可以作为除磷的电子受体,在缺氧条件下实现同步脱氮除磷,并且亚硝酸氮作为电子受体时的脱氮除磷效率高于硝酸氮.  相似文献   

7.
同步硝化反硝化脱氮技术   总被引:14,自引:0,他引:14  
同步硝化反硝化生物脱氮技术与传统生物脱氮技术相比,具有节省碳源、减少曝气量、可实现单级生物脱氮等优点,故近年来受到水处理工作者的广泛关注.文章综合国内外对同步硝化反硝化的研究成果,阐述了同步硝化反硝化技术的原理、特点、实现条件及影响因素。同时,结合同步硝化反硝化技术在实际中的最新应用情况,对该技术需解决的问题及应用前景作了探讨。  相似文献   

8.
利用3.2 L的厌氧膜生物反应器对产物为S0的自养反硝化工艺控制条件进行研究。实验中S/N比控制为2.5,氮负荷为0.07~0.08 kg·m-3·d-1时,分别研究HRT和pH值对底物去除以及单质硫积累的影响。反应器在进水硫化物浓度和NO3--N浓度分别为110和20 mg·L-1情况下运行,在pH值为7时,HRT分别为7.41和6.83 h时对NO3--N和硫化物的去除率基本无影响,分别为93%和100%,但对单质硫的积累有显著影响。HRT为6.83 h时,单质硫的积累率最大,为61%。pH为7.5、7、6.5和6时,对NO3--N和硫化物的去除率基本无影响,较低的pH(pH=7)有利于单质硫的积累,积累率可达62%左右,但进一步降低pH对单质硫积累率提高的帮助不大,仅能提高至65%。  相似文献   

9.
结合国内外研究,从宏观环境理论、微环境理论以及微生物学理论三方面阐明了同步硝化反硝化的脱氮机理,并对同步硝化反硝化的影响因素进行了综述,提出了该技术今后的研究方向。  相似文献   

10.
短程硝化反硝化生物脱氮技术   总被引:17,自引:3,他引:17  
为防止湖泊和其他受纳水体富营养化的发生,各城市污水处理厂均应用新的运行方法和控制策略进行脱氮除磷.随着新的微生物处理技术的介入,污水处理设施的功效得到显著提高.短程硝化反硝化技术应用于处理高氨氮质量浓度和低C/N比污水时,在经济上和技术上均具有较高的可行性.成功实现短程硝化反硝化技术的关键是将硝化反应控制并维持在亚硝酸盐阶段,不进行亚硝酸盐至硝酸盐的转化.从不同角度对成功实现、维持和应用短程硝化反硝化技术的方法进行探讨,主要包括控制DO质量浓度、调节污泥龄、反应温度、系统pH、底物负荷、工艺运行方式、抑制剂等.  相似文献   

11.
针对传统的填充床硫自养反硝化工艺填料用量大、水头损失严重以及反应器易堵塞等问题,采用硫涂层接触反硝化工艺进行模拟污水脱氮研究,主要考察反应器内部的填料填充比、温度以及水力停留时间(HRT)对其脱氮性能的影响。结果表明:在进水NO-3-N浓度为50 mg/L、温度为(25±1)℃、HRT=19.5 h时,将填料填充比由1/10增大到1/5,NO-3-N的去除效果明显提升,由56.77%提升至78.26%;温度变化对反应器脱氮有很大影响,当填料填充比为1/5、HRT=19.5 h时,在(25±1)℃和(30±1)℃条件下,NO-3-N的平均去除率分别为71.05%和98.38%;此外,当HRT降低至9.7 h时,NO-3-N的平均去除率为89.29%。整个反应过程中,出水NO-2-N浓度均很低,保持在0.4 mg/L以内,并且反应器出水pH值保持在6.8~8.3之间,满足微...  相似文献   

12.
采用静态试验对自养硝化污泥的除磷特性进行研究.分别提供氨、无机碳源和氨、无机碳源三种营养条件,考察了厌氧-好氧交替环境下硝化细菌摄取磷酸盐的情况.结果表明:在与聚磷菌的运行模式相对应的条件下,硝化污泥无除磷效果;通过染色观察,硝化细菌体内几乎没有PHB颗粒及异染颗粒;按照传统聚磷菌除磷模式培养的硝化细菌未表现出明显的除磷特性.论文从能量利用、营养类型及培养条件等方面对该现象和产生的原因进行了分析.  相似文献   

13.
含盐废水短程硝化反硝化生物脱氮的研究   总被引:5,自引:0,他引:5  
试验采用SBR工艺研究了不同盐度下,NH4^ -N、pH值、温度等因素对含盐废水短程硝化反硝化的影响.结果表明,含盐量增加有助于亚硝酸盐的积累.含盐量在1759~24630mg/L范围内,通过提高进水pH值和进水NH4^ -N浓度,可以使亚硝化率[NO2^-/(NO2^- NO3^-)]达到90%以上.实验证明,亚硝酸菌有较高的耐盐性,能在高盐环境中保持良好的活性.  相似文献   

14.
污水反硝化脱氮的固态有机碳源选择实验研究   总被引:5,自引:0,他引:5  
选择7种研究较少的纤维素类物质花生壳、核桃壳、竹子、莲蓬壳、丝瓜络、原棉和稻壳作为反硝化菌的固态有机碳源,以活性污泥为接种物在锥形瓶中进行对比反硝化实验,研究了实验过程中NO3--N、NO2--N、COD、pH值的变化情况。研究结果表明,丝瓜络和原棉相对其他选择的固态有机碳源上有较高的NO3--N去除率。中间产物NO2--N的积累与NO3--N去除率相关,当NO3--N去除率>95%,无NO2--N的积累;当NO3--N去除率在40%~95%之间,容易产生NO2--N的积累;当NO3--N去除率更低时,也无NO2--N的积累。  相似文献   

15.
利用批量实验模拟SBR反应器中的硝化反硝化反应,考察不同温度、pH值、溶解氧(ρDO),碳氮比(COD/NH3)对同步硝化反硝化脱氮效率的影响。研究表明,在温度为30℃,ρDO为5 5mg/L,pH为7 0,碳氮比为20 7时总氮去除率可达48 7%;同时可以推断活性污泥中可能同时存在异养硝化菌和好氧反硝化菌。  相似文献   

16.
同步硝化反硝化脱氮影响因素探讨   总被引:5,自引:0,他引:5  
利用批量实验模拟SBR反应器中的硝化反硝化反应,考察不同温度、pH值、溶解氧(ρDO),碳氮比(COD/NH3)对同步硝化反硝化脱氮效率的影响。研究表明,在温度为30℃,ρDO为5.5mg/L,pH为7.0,碳氮比为20.7时总氮去除率可达48.7%;同时可以推断活性污泥中可能同时存在异养硝化菌和好氧反硝化菌。  相似文献   

17.
通过对比运行三维电极生物膜-硫自养耦合脱氮系统和常规三维电极生物膜工艺,并运用反硝化基因nir S克隆文库方法,研究了耦合脱氮系统脱氮性能和反硝化细菌的多样性,为揭示耦合脱氮系统反硝化机理和优化系统运行参数提供参考.研究结果表明:三维电极生物膜与硫自养耦合脱氮系统具有较高的脱氮效率和平衡系统酸碱度的能力.系统中反硝化菌群的Shannon-Wiener指数和Simpson指数分别为2.436和0.894;Beta proteobacteria在耦合脱氮系统中起主导作用;有35个克隆子(61.49%)与陶厄氏菌属(Thauera)有较高的同源性;脱氮硫杆菌(Thiobacillus denitrifican)的比例为3.5%;11个克隆子(19.29%)与食酸菌属(Acidovorax)有一定的同源性.说明当耦合系统碳源充足时,脱氮作用主要以异养反硝化过程为主,以单质硫和氢为电子供体的自养反硝化脱氮作用也占有一定比例.  相似文献   

18.
以硫化物为基质的硫自养反硝化耦合厌氧氨氧化技术不但能除硫,还可以在硫循环的条件下实现高效脱氮.为实现该技术需要将硫自养反硝化过程控制在亚硝化阶段,随后进行以亚硝酸盐为电子受体的厌氧氨氧化反应.其关键在于如何实现亚硝酸盐的积累.文中介绍了硫自养反硝化的反应机理以及如何对影响亚硝酸盐,积累的因素进行精准调控,探讨了厌氧氨氧化-自养反硝化技术的主要途径.  相似文献   

19.
目的研究碳源种类对双泥生物膜亚硝化反硝化除磷工艺脱氮除磷的影响程度.方法以甲醇、淀粉、葡萄糖、乙酸钠、丙酸钠、污泥水解酸化液六种碳源模拟废水,通过间歇运行方式对不同碳源的反硝化除磷系统的运行状态进行研究.结果六个系统中,淀粉的COD去除率最小,为45%,其余系统相差不大,去除率最大的是污泥水解酸化液,为88%;缺氧结束时系统出水PO43--P质量浓度分别为2.24 mg/L、3.00 mg/L、3.81 mg/L、1.40 mg/L、2.46 mg/L、1.18 mg/L;各系统每克M LSS的亚反硝化速率分别为1.27 mg/(g·h)、1.15 mg/(g·h)、1.58 mg/(g·h)、2.91 mg/(g·h)、2.60 mg/(g·h)、2.03 mg/(g·h).结论碳源种类对双泥生物膜亚硝化反硝化除磷系统有很大影响,淀粉类大分子碳源不利于反硝化除磷,乙酸钠类小分子物质有利于磷的释放和吸收.  相似文献   

20.
碳源对生物膜同步硝化反硝化脱氮影响   总被引:4,自引:0,他引:4  
利用序批式移动床生物膜反应器研究了有机碳源对低碳氮比ρC/ρN(指ρCOD/ρTN,以下同)生活污水同步硝化反硝化脱氮的影响,结果表明,在无外加碳源时,同步硝化反硝化条件下TN去除率为59.8%,COD平均去除率为83.12%,NH+4-N去除率为94.9%(最高达到99.8%);分别以淀粉、葡萄糖和甲醇为外加碳源,ρC/ρN=7时,发现投加外碳源有利于有机物、NH4+-N和TN的降解和转化,NH4+-N转化受碳源种类影响不大,投加淀粉时有机物降解不完全导致系统有恶化趋势,投加甲醇碳源时系统脱氮效率最高,TN去除率达84.5%,投加葡萄糖时,TN去除率为80.55%,从安全和经济方面考虑,确定投加葡萄糖较为合适.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号