首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
Seepage water chemistry and input–output budgets of major ions are investigated within an oak chronosequence (Quercus petraea Liebl., 3 years; Quercus rubra L., 26 and 37 years) on acid-sulphurous soils of lignite mining. Due to declining intensity of weathering and deep percolation, the leaching rates of Fe, Al, Mn, Mg, Ca, NH4 and SO4-S from soil decline drastically within 34 years. Moreover, an enrichment of NH4-N, NO3-N, PO4-P and K can be noticed, resulting from the accumulation of living biomass.  相似文献   

2.
Juan Tong 《Water research》2009,43(12):2969-2976
In previous publications we reported that by controlling the pH at 10.0 the accumulation of short-chain fatty acids (SCFA) during waste activated sludge (WAS) fermentation was remarkably improved [Yuan, H., Chen, Y., Zhang, H., Jiang, S., Zhou, Q., Gu, G., 2006. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ. Sci. Technol. 40, 2025-2029], but significant ammonium nitrogen (NH4-N) and soluble ortho-phosphorus (SOP) were released [Chen, Y., Jiang, S., Yuan, H., Zhou, Q., Gu, G., 2007. Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41, 683-689]. This paper investigated the simultaneous recovery of NH4-N and SOP from WAS alkaline fermentation liquid and the application of the fermentation liquid as an additional carbon source for municipal wastewater biological nitrogen and phosphorus removal. The central composite design (CCD) of the response surface methodology (RSM) was employed to optimize and model the simultaneous NH4-N and SOP recovery from WAS alkaline fermentation liquid. Under the optimum conditions, the predicted and experimental recovery efficiency was respectively 73.4 and 75.7% with NH4-N, and 82.0 and 83.2% with SOP, which suggested that the developed models described the experiments well. After NH4-N and SOP recovery, the alkaline fermentation liquid was added to municipal wastewater, and the influence of volume ratio of fermentation liquid to municipal wastewater (FL/MW) on biological nitrogen and phosphorus removal was investigated. The addition of fermentation liquid didn't significantly affect nitrification. Both SOP and total nitrogen (TN) removal were increased with fermentation liquid, but there was no significant increase at FL/MW greater than 1/35. Compared to the blank test, the removal efficiency of SOP and TN at FL/MW = 1/35 was improved from 44.0 to 92.9%, and 63.3 to 83.2%, respectively. The enhancement of phosphorus and nitrogen removal was mainly attributed to the increase of influent SCFA, or rather, the increase of intracellular polyhydroxyalkanoates (PHA) which served as the carbon and energy sources for denitrification and phosphorus uptake. The addition of alkaline fermentation liquid to municipal wastewater, however, increased the effluent COD, which was caused mainly by the increase of influent humic acid, not protein or carbohydrate.  相似文献   

3.
Laboratory scale, room temperature, semi-continuous reactors were set-up to investigate the effect of solids retention time (SRT, equal to HRT hydraulic retention time) and biomass concentration on generation of volatile fatty acids (VFA) from the non-methanogenic fermentation of waste activated sludge (WAS) originating from an enhanced biological phosphorus removal process. It was found that VFA yields increased with SRT. At the longest SRT (10 d), improved biomass degradation resulted in the highest soluble to total COD ratio and the highest VFA yield from the influent COD (0.14 g VFA-COD/g TCOD). It was also observed that under the same SRT, VFA yields increased when the biomass concentration decreased. At a 10 d SRT the VFA yield increased by 46%, when the biomass concentration decreased from 13 g/L to 4.8 g/L. Relatively high nutrient release was observed during fermentation. The average phosphorus release was 17.3 mg PO4-P/g TCOD and nitrogen release was 25.8 mg NH4-N/g TCOD.  相似文献   

4.
Pilot-scale struvite crystallization tests using anaerobic effluent from potato processing industries were performed at three different plants. Two plants (P1 & P2) showed high phosphate removal efficiencies, 89 ± 3% and 75 ± 8%, resulting in final effluent levels of 12 ± 3 mg PO43−-P L−1 and 11 ± 3 mg PO43−-P L−1, respectively. In contrast, poor phosphate removal (19 ± 8%) was obtained at the third location (P3). Further investigations at P3 showed the negative effect of high Ca2+/PO43−-P molar ratio (ca. 1.25 ± 0.11) on struvite formation. A full-scale struvite plant treating anaerobic effluent from a dairy industry showed the same Ca2+ interference. A shift in the influent Ca2+/PO43−-P molar ratio from 2.69 to 1.36 resulted in average total phosphorus removal of 78 ± 7%, corresponding with effluent levels of 14 ± 4 mg Ptotal L−1 (9 ± 3 mg PO43−-P L−1). Under these conditions high quality spherical struvite crystals of 2-6 mm were produced.  相似文献   

5.
Anderson MA  Pacheco P 《Water research》2011,45(15):4399-4408
The acoustical properties of bottom sediments in two lakes were shown to be strongly correlated with clay content, organic C and total N concentrations, and other important sediment properties. The fractal dimension of the bottom echo was more strongly correlated with sediment physical and chemical properties than energy-based measures. The fractal dimension was also related to rates of PO4-P and NH4-N release from intact sediment cores and sediment oxygen demand. Measurements made at 430-kHz were more sensitive to differences in sediment properties than 201- or 38-kHz. Hydroacoustic measurements allow rapid assessment of properties important in lake restoration and water resource management.  相似文献   

6.
Increasing concern about the fate of 17α-ethinylestradiol (EE2) in the environment stimulates the search for alternative methods for wastewater treatment plant (WWTP) effluent polishing. The aim of this study was to establish an innovative and effective biological removal technique for EE2 by means of a nitrifier enrichment culture (NEC) applied in a membrane bioreactor (MBR). In batch incubation tests, the microbial consortium was able to remove EE2 from both a synthetic minimal medium and WWTP effluent. A maximum EE2 removal rate of 9.0 μg EE2 g−1 biomass-VSS h−1 was achieved (>94% removal efficiency). Incubation of the heterotrophic bacteria isolated from the NEC did not result in a significant EE2 removal, indicating the importance of nitrification as driving force in the mechanism. Application of the NEC in a MBR to treat a synthetic influent with an EE2 concentration of 83 ng EE2 L−1 resulted in a removal efficiency of 99% (loading rates up to 208 ng EE2 L−1 d−1; membrane flux rate: 6.9 L m−2 h−1). Simultaneously, complete nitrification was achieved at an optimal ammonium influent concentration of 1.0 mg NH4+-N L−1. This minimal NH4+-N input is very advantageous for effluent polishing since the concomitant effluent nitrate concentrations will be low as well and it offers opportunities for the nitrifying MBR as a promising add-on technology for WWTP effluent polishing.  相似文献   

7.
Chen ZB  Nie SK  Ren NQ  Chen ZQ  Wang HC  Cui MH 《Water research》2011,45(16):5266-5278
The results of the use of an expert system (ES) to control a novel multi-stage loop membrane bioreactor (MLMBR) for the simultaneous removal of organic substances and nutrients are reported. The study was conducted at a bench-scale plant for the purpose of meeting new discharge standards (GB21904-2008) for the treatment of chemical synthesis-based pharmaceutical wastewater (1200-9600 mg/L COD, 500-2500 mg/L BOD5, 50-200 mg/L NH4+-N and 105-400 mg/L TN in the influent water) by developing a distributed control system. The system allows various expert operational approaches to be deployed with the goal of minimizing organic substances and nitrogen levels in the outlet while using the minimum amount of energy. The proposed distributed control system, which is supervised by a Knowledge-Based Expert System (KBES) constructed with G2 (a tool for expert system development) and a back propagation BP artificial neural network, permits the on-line implementation of every operating strategy of the experimental system. A support vector machine (SVM) is applied to achieve pattern recognition. A set of experiments involving variable sludge retention time (SRT), hydraulic retention time (HRT) and dissolved oxygen (DO) was carried out. Using the proposed system, the amounts of COD, TN and NH4+-N in the effluent decreased by 55%, 62% and 38%, respectively, compared to the usual operating conditions. These improvements were achieved with little energy cost because the performance of the treatment plant was optimized using operating rules implemented in real time.  相似文献   

8.
The residuals of the bamboo pulping wastewater were analysed systematically. The COD (chemical oxygen demand) decreased significantly by adding appropriate coagulant (1.5 kg/m3 10% Al2 (SO4)3 as coagulant and 2 mg/L anionic PAM as coagulant aid) to the effluent in secondary sedimentation tank. The study found that hydrolytic bacteria in primary sedimentation tank and balancing tank may increase the ratio of BOD/COD and promote the release of ammonia nitrogen (NH3‐N), which was benefit to further degradation of organic pollutants by aerobic biological treatment. Through optimizing biochemical process and adjusting contents of nitrogen, phosphorus, and mineral elements, the effects of wastewater treatment has been greatly enhanced and the quality of discharged water could met the new national standard GB3544‐2008.  相似文献   

9.
Macroinvertebrate populations includingGammarus pulex andAsellus aquaticus were surveyed at riffle sites on four lowland rivers, i.e. the Rivers Adur and Ouse and the Chess Stream, Sussex, and the Eridge Stream, Kent. Sites were situated both upstream and downstream of sewage treatment works. Macroinvertebrates were collected using a Surber sampler and at some sites the water analysed for the main chemical constituents.Poor water quality is characteristically associated with low biotic scores and in this respect theGammarus : Asellus ratio applied to riffle data corresponded with the Chandler Biotic Score Index and the Extended Trent Biotic Index. TheGammarus : Asellus ratio showed the closest correlations with concentrations of BOD, ammonia-nitrogen (NH3-N), nitrite-nitrogen (NO2-N) and phosphate-phosphorus (PO4-P) being sensitive to changes in water quality brought about by organic enrichment in the four rivers investigated.It is proposed that theGammarus : Asellus ratio may provide a simple biological tool which could be used by anglers and other non-professional river users to routinely monitor water quality.  相似文献   

10.
The purpose of this investigation was to assess the groundwater impact of irrigation with industrial wastewater (baker's yeast wastewater, BYW) and to determine if agricultural reuse can be considered as an efficient wastewater treatment method. The impact of the irrigation and the status of the groundwater quality were determined using chemical parameters that are typical contaminants of BYW and characterise the content of total suspended solids (TSSs), organic matter (biochemical and chemical oxygen demands), nutrients (Norg, N‐NH4, N‐NO3, Ntotal, Ptotal and K), salts (Cl, SO4 and Na) and pH. The study revealed that BYW irrigation did not cause a significant increase in the content of these parameters in groundwater at a low water table region (WTR). However, at a high WTR, the irrigation had an extremely significant (P < 0.001) impact on the chemical status of groundwater that has been demonstrated by substantially high values of COD, N‐NH4, Cl, SO4 and Na.  相似文献   

11.
Pulp and paper mill wastewater was characterizated, before (influent) and after (effluent) biological wastewater treatment based on an activated sludge process, by microfiltration (8, 3, 0.45 and 0.22mum) and ultrafiltration (100, 50, 30 and 3kDa) of the wastewater samples into different size fractions. Various parameters were measured on each fraction: molecular weight distribution (MWD) using high performance size exclusion chromatography (HPSEC), total organic carbon (TOC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (Tot-P), phosphate phosphorus (PO(4)-P), electrical conductivity, pH, turbidity, charge quantity and zeta potential. The MWD, TOC and COD(Cr) results indicated that the majority of the material present in both the influent and effluent was in the medium molecular weight (MW) range (i.e. MW<10kDa) with three main MW sub-fractions. There were no significant differences in the range of the MWD between the influent and effluent samples. The magnitude of the MWD in the effluent was about one half that in the influent, the greatest reduction being in the 6kDa fraction. The 3kDa fractions of both the influent and effluent showed a considerable increase in BOD(7), probably due to the removal of compounds harmful to bacteria in 3kDa ultrafiltration. Influent turbidity decreased considerably in microfiltration (8-0.22mum). As the turbidity was removed by 0.22mum filtration, the anionic charge quantity started to decrease. Particles in the influent and effluent contained 19-29% and 14-20% of the total phosphorus, respectively. The major phosphorus fraction was in the form of soluble phosphate.  相似文献   

12.
Soluble microbial products (SMPs) present a major part of residual chemical oxygen demand (COD) in the effluents from biological wastewater treatment systems, and the SMP formation is greatly influenced by a variety of process parameters. In this study, response surface methodology (RSM) coupled with grey relational analysis (GRA) method was used to evaluate the effects of substrate concentration, temperature, NH4+-N concentration and aeration rate on the SMP production in batch activated sludge reactors. Carbohydrates were found to be the major component of SMP, and the influential priorities of these factors were: temperature > substrate concentration > aeration rate > NH4+-N concentration. On the basis of the RSM results, the interactive effects of these factors on the SMP formation were evaluated, and the optimal operating conditions for a minimum SMP production in such a batch activated sludge system also were identified. These results provide useful information about how to control the SMP formation of activated sludge and ensure the bioreactor high-quality effluent.  相似文献   

13.
A novel hybrid aerating membrane-anaerobic baffled reactor (HMABR), based on the installation of aerating membrane into an anaerobic baffled reactor (ABR), to achieve simultaneous removal of nitrogenous and carbonaceous organic pollutants was developed in this study. The results demonstrated that after the installation of membrane module, total VFA and COD concentration in the HMABR effluent were decreased by 68.1 and 59.5% respectively, with increased nitrogenous pollutant remove efficiency by 83.5%, at influent COD concentration of 1600 mg/L and NH4+-N concentration of 80 mg/L. Fluorescence in situ hybridization (FISH) results of the aerating membrane biofilm showed that the biofilm stratification for the spatial profiles of ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, aerobic heterotrophic bacteria, and denitrifying bacteria. The potential usage of HMABR widens the usage of aerobic-anaerobic combination technology for industrial wastewater treatment.  相似文献   

14.
The objective of this full‐scale study is to determine the treatment performance of the activated sludge process for treating low strength municipal wastewater. The plant is located in Painesville, Ohio, and discharges its treated effluent into Grand River. The average plant wastewater flow was 3.43 MGD (million gallons per day). The plant performance was evaluated for a 12‐month period in 1989. The low strength municipal wastewater contained 104 mg/L TSS (total suspended solids), 105 mg/L BOD (biochemical oxygen demand), 17.76 mg/L TKN (total kjeldahl nitrogen), 9.66 mg/L NH3‐N, and 3.90 mg/L P (phosphorus). The treatment performance after various degrees of treatment is as follows: primary treatment: 30% BOD and 54% TSS removal, secondary treatment: 97% BOD and 87% TSS removal, and tertiary treatment: 98% BOD and 98% TSS removal. The primary effluent contained 73 mg/L BOD and 48 mg/L TSS; the secondary effluent contained 3 mg/L BOD and 13 mg/L TSS; and the final effluent contained 2 mg/L BOD and 2 mg/L TSS. The effluent contained 0.22 mg/L NH3‐N and 0.49 mg/L P, which were far below the US EPA standard of 10 mg/L BOD, 10 mg/L TSS, 1 mg/L NH3‐N, and 1 mg/L P.  相似文献   

15.
Four laboratory-scale units of vertical-flow constructed wetlands (VFCW) were fed once a week with faecal sludge (FS) at a constant solids loading rate (SLR) of 250 kg TS/(m2.year) (equivalent to 260-300 g N/(m2.week)) for a period of 12 weeks to study: i) the nitrification and denitrification potential of the sand layer of VFCWs and ii) the effect of percolate impounding regime (permanent or batch-impounding) on nitrogen transformation. The TN content of raw FS was characterised by 65% org-N, 34% NH4-N and 1% NOx-N. After FS application and a six-day impounding period, 8-13% TN were recovered in the percolate exhibiting the following composition: 70-80% NH4-N, 25-30% org-N and <1% NOx-N. A large fraction of the influent organic N (55%) was filtered in the bed and 24-29% of initial NH4-N were lost due to nitrification and volatilisation. In permanent impounding systems, 8-11% TN were recovered in the percolate versus 13% in batch-operated beds. N loss was increased with sand layer depth (20-40 cm) under permanent impounding regimes.  相似文献   

16.
Recommended loading rates for treating raw domestic wastewater by overland flow are 6.3–15 cm wk−1. Information provided in the literature yields little insight regarding the upper range of hydraulic loading rates that could be effectively treated by overland flow. Therefore, field investigations were conducted to evaluate the performance of the overland flow system at overland flow rates from 0.95 m3 day−1 m−1 width of slope (13 cm wk−1 to 4.15 m3 day−1 m−1 (57 cm wk−1).Preliminary treated municipal wastewater was pumped to overland flow slopes, each approx. 3.7 m wide and 36.5 m long. The slope of each plot was 2.5%. The cover crop consisted of a mixture of ryegrass, bluegrass and fescue grass. The plots were operated for 2 years at six different hydraulic loading rates.Effluent BOD5 concentration averages varied from 6 to 11 mg l−1. The reduction of influent BOD5 concentration ranged from 87 to 93%. Mean effluent suspended solids values were from 6 to 9 mg l−1 with reductions of influent concentrations of 91–95%. Hydraulic application rate had little effect on percent BOD5 or suspended solids removal.Total phosphorus reductions were minimal at all hydraulic application rates due to limited soil water contact.Ammonia concentration in the effluent ranged from 1 mg l−1 NH3-N at the 0.95 m3 day−1 m−1 (13 cm wk−1) applied flow rate of 11.7 mg l−1 NH3-N at the 4.15 m3 day−1 m−1 (57 cm wk−1) loading rate. Ammonia and nitrogen reductions decreased as the applied flow rate increased. Consequently, lower overland flow rates are necessary for nitrogen removal.The use of high-rate overland flow could potentially reduce the land necessary for this form of land application, if nutrient removal was not a local concern.  相似文献   

17.
The ammonium adsorption properties of aerobic granular sludge, activated sludge and anammox granules have been investigated. During operation of a pilot-scale aerobic granular sludge reactor, a positive relation between the influent ammonium concentration and the ammonium adsorbed was observed. Aerobic granular sludge exhibited much higher adsorption capacity compared to activated sludge and anammox granules. At an equilibrium ammonium concentration of 30 mg N/L, adsorption obtained with activated sludge and anammox granules was around 0.2 mg NH4-N/g VSS, while aerobic granular sludge from lab- and pilot-scale exhibited an adsorption of 1.7 and 0.9 mg NH4-N/g VSS, respectively. No difference in the ammonium adsorption was observed in lab-scale reactors operated at different temperatures (20 and 30 °C). In a lab-scale reactor fed with saline wastewater, we observed that the amount of ammonium adsorbed considerably decreased when the salt concentration increased. The results indicate that adsorption or better ion exchange of ammonium should be incorporated into models for nitrification/denitrification, certainly when aerobic granular sludge is used.  相似文献   

18.
A trapezoidal constructed ditch (TCD) of 300 m length and 2.2 m width was designed and built in the downstream section of the upper Yangtze River for in situ treatment of primary domestic sewage. The removal efficiencies of TN, NH4‐N, NO3‐N, TP and PO4‐P from the TCD were approximately 61, 63, 48, 58 and 51%, respectively. The concentrations of TN, NH4‐N, NO3‐N, TP and PO4‐P showed a decreasing trend with increasing distance downstream. Plant assimilation and sediment retention were the key mechanisms for N and P removal within the TCD, with subsequent microbial uptake and transformation of the nutrients. The TCD outlet showed significantly higher dissolved oxygen (DO) concentrations and lower values of electrical conductivity and total dissolved solids compared to the influent. Results of this study highlight the potential of TCD to mitigate nutrients from primary domestic sewage transported downstream and could be incorporated into local best management practices.  相似文献   

19.
Black water (toilet water) contains half the load of organic material and the major fraction of the nutrients nitrogen and phosphorus in a household and is 25 times more concentrated, when collected with a vacuum toilet, than the total wastewater stream from a Dutch household. This research focuses on the partial nitritation of anaerobically treated black water to produce an effluent suitable to feed to the anammox process. Successful partial nitritation was achieved at 34 °C and 25 °C and for a long period (almost 400 days in the second period at 25 °C) without strict process control a stable effluent at a ratio of 1.3 NO2-N/NH4-N was produced which is suitable to feed to the anammox process. Nitrite oxidizers were successfully outcompeted due to inhibition by free ammonia and nitrous acid and due to fluctuating conditions in SRT (1.0-17 days) and pH (from 6.3 to 7.7) in the reactor. Microbial analysis of the sludge confirmed the presence of mainly ammonium oxidizers. The emission of nitrous oxide (N2O) is of growing concern and it corresponded to 0.6-2.6% (average 1.9%) of the total nitrogen load.  相似文献   

20.
A laboratory-scale, four-stage continuous flow reactor system was constructed to test the viability of high-strength acid mine drainage (AMD) and municipal wastewater (MWW) passive co-treatment. The synthetic AMD had pH 2.60 and 1860 mg/L acidity as CaCO3 equivalent with 46, 0.25, 2, 290, 55, 1.2 and 390 mg/L of Al, As, Cd, Fe, Mn, Pb and Zn, respectively. The AMD was introduced to the system at a 1:2 ratio with raw MWW from the City of Norman, Oklahoma USA containing 265 ± 94 mg/L BOD5, 11.5 ± 5.3 mg/L PO4−3, and 20.8 ± 1.8 mg/L NH4+-N. During the 135 d experiment, PO4−3 and NH4+-N were decreased to <0.75 and 7.4 ± 1.8 mg/L, respectively. BOD5 was generally decreased to below detection limits. Nitrification increased NO3 to 4.9 ± 3.5 mg/L NO3-N, however relatively little denitrification occurred. Results suggest that the nitrogen processing community may require an extended period to mature and reach full efficiency. Overall, results indicate that passive AMD and MWW co-treatment is a viable ecological engineering approach for the developed and developing world that can be optimized and applied to improve water quality with minimal use of fossil fuels and refined materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号