首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
以苯酚为萃取剂,利用萃取精馏原理,采用双塔精馏流程分离甲醇和碳酸二甲酯共沸物,采用NRTL热力学方程描述甲醇-碳酸二甲酯-苯酚三元混合物的汽液平衡,根据实验数据拟合了该热力学方程中的参数,计算结果与实验数据吻合.对甲醇-碳酸二甲酯-苯酚三元相图进行了分析,从理论上说明了采用双塔精馏流程的可行性.采用Aspen Plus流程模拟软件对双塔萃取精馏流程进行了模拟计算,并运用灵敏度分析工具考察了萃取剂用量、回流比、进料位置等对分离效果和操作费用的影响,确定了优化的分离工艺操作参数,对于实际工业过程的设计和改造有一定的指导意义.  相似文献   

2.
通过COSMOthermX软件计算,选择十四烷基三甲基乙酸铵([N14,1,1,1][OAc])为萃取剂,分离环己烷和乙醇共沸体系.采用Aspen Plus流程模拟软件对环己烷-乙醇混合物的萃取精馏过程进行模拟,分析塔板数、回流比、原料进料位置、萃取剂进料量等参数对分离效果及能耗的影响,并对参数进行优化.确定最优的操作...  相似文献   

3.
利用Aspen Plus化工模拟流程软件对甲苯-乙醇共沸体系进行了萃取精馏模拟分离研究。应用Flash 2模块来筛选出萃取精馏的适宜溶剂为正丁苯。确定了萃取精馏的工艺流程,并且通过灵敏度分析模块分别考查了萃取精馏塔和溶剂回收塔的进料板位置、回流比以及溶剂比对分离效果的影响。当溶剂质量比为2.2时,产品乙醇的质量分数可达99.9%,甲苯可达99.5%,溶剂回收率约为99.5%。  相似文献   

4.
加盐萃取精馏分离苯中低含量正庚烷的实验研究   总被引:2,自引:0,他引:2  
为获得高纯度苯,须除去粗苯中正庚烷等杂质,在正庚烷质量分数较低时,苯与正庚烷之间的相对挥发度趋近于1,采用萃取精馏进行分离存在萃取剂耗量过大等缺点,溶剂加盐萃取精馏克服了萃取精馏的缺点,该技术是目前学术界高度关注的方法,其在分离醇—水、酯—水等极性体系得到了广泛的应用.但该技术应用于非极性体系的研究刚刚起步.这里采用加盐萃取精馏方法对苯-正庚烷非极性体系进行了实验研究,考察了盐的类型、盐的质量分数、溶剂体积比等因素对分离苯-正庚烷两组分的分离效果影响,并分析了上述因素对其相对挥发度影响的规律.结果表明:采用DMF为溶剂(溶剂与原料液体积比为1∶1)加KSCN(质量分数为13%)分离苯中低含量正庚烷取得了令人满意的结果,其相对挥发度在全组成范围内有较大提高.  相似文献   

5.
异丙醇-异丙醚形成二元共沸物,一般精馏方法很难分离.利用化工过程软件Aspen Plus,在异丙醇和异丙醚产物的摩尔分数达到0.999的条件下,以乙二醇为溶剂的萃取精馏流程和热集成变压精馏流程对异丙醇-异丙醚混合物分离进行模拟.以全年总费用最低为目标,确定萃取精馏流程两塔的理论板数、进料位置和溶剂进料位置以及热集成变压精馏流程的高压塔操作压力,两塔的理论板数,进料位置,得到两种流程的最优操作条件.从模拟结果可知,对于异丙醇-异丙醚混合物的分离,热集成变压精馏所需的全年总费用更低,比萃取精馏的全年总费用降低了10.86%.对于该混合物,热集成变压精馏流程要优于萃取精馏流程.  相似文献   

6.
采用Aspen Plus,以咪唑类离子液体[BMIM][DBP](1-丁基-3-甲基咪唑磷酸二丁酯)作为萃取剂对乙酸乙酯-异丙醇共沸物系的萃取精馏过程进行模拟和优化.通过灵敏度模型分析工具得到萃取精馏塔的最佳操作条件:[BMIM][DBP]进料量为18 kmol/h,全塔理论塔板数为26,摩尔回流比为0.8,[BMIM][DBP]进料位置为第3块塔板,乙酸乙酯和异丙醇的混合原料进料位置为第9块塔板.基于以上的最佳操作条件,从塔顶得到摩尔分数可达0.999的乙酸乙酯,满足分离要求.结果表明[BMIM][DBP]作为萃取剂在分离乙酸乙酯-异丙醇中具有良好的工业应用前景.  相似文献   

7.
以从制药废液中回收四氢呋喃为例,详细研究萃取精馏过程的Aspen Plus模拟和优化.通过实验与热力学模型预测的对比确定NRTL方程能更准确地描述THF-水-DMSO三元混合物系气液相平衡;分析THF-水-DMSO三元混合物系剩余曲线说明DMSO是萃取精馏分离该共沸物系的可行萃取剂;设计萃取精馏分离工艺流程并以萃取精馏塔为例,运用灵敏度分析对过程进行优化,结果表明:200 kmol/h进料量的常压萃取精馏,塔板数22,萃取剂和原料液分别在第4和第18块板进料,回流比1.0,溶剂比0.45的条件下可得到纯度高于99.85%的THF,回收率高于99.5%.  相似文献   

8.
选用N-N-二甲基乙酰胺(DMAC)为萃取剂,用ASPEN PLUS11.1化工模拟软件中的RadFrac单元操作模块,采用UNIFAC物性计算方法,通过优化各操作参数,对二异丙醚和异丙醇二元共沸物系的分离进行萃取精馏模拟计算.并考察原料进料位置、溶剂进料位置、溶剂比、回流比对二异丙醚纯度的影响.结果表明:在适宜的操作条件下,塔顶二异丙醚的纯度可达到99.94%,模拟计算的结果对于实现工业化的分离有参考作用.  相似文献   

9.
从120号溶剂油中提取正庚烷并回收甲基环己烷的研究   总被引:1,自引:0,他引:1  
总结了国内外正庚烷的生产状况和市场行情,分析了中小型石化企业生产正庚烷的可行件,提出采用萃取精馏分离正庚烷的方法.在间歇精馏塔塔顶温度为91-101℃、塔釜为103-110℃的条件下,可以得到58%以上正庚烷和甲基环己烷的混合液.根据物质相关性质,初步确定有关萃取溶剂,利用单级循环汽液平衡釜对初选的萃取剂进行实验研究,选定乙二醇作为萃取剂,为进一步实验研究提供依据.  相似文献   

10.
以乙二醇为溶剂,使用Aspen Plus化工模拟软件中的BatchFrac模块,基于UNIFAC模型,对异丙醇-水二元共沸物的间歇萃取精馏过程进行间歇萃取精馏模拟,研究了不同操作参数(如溶剂比、回流比、溶剂进料位置、溶剂进料温度等)对整个精馏过程的影响,对各工艺参数进行了分析与优化.结果表明,对于处理量为100kmol...  相似文献   

11.
以乙二醇为溶剂,使用Aspen Plus化工模拟软件中的BatchFrac模块,基于UNIFAC模型,对异丙醇-水二元共沸物的间歇萃取精馏过程进行间歇萃取精馏模拟,研究了不同操作参数(如溶剂比、回流比、溶剂进料位置、溶剂进料温度等)对整个精馏过程的影响,对各工艺参数进行了分析与优化。结果表明,对于处理量为100kmol的异丙醇-水溶液,精馏塔具有20块塔板,溶剂比为2,回流比为5,溶剂进料位置在第3块塔板,溶剂进料温度为80℃时,塔顶异丙醇质量分数可达0.998,收率可达0.978。  相似文献   

12.
萃取精馏分离甲醇与醋酸甲酯的实验研究   总被引:4,自引:0,他引:4  
建立了一套φ40mm精馏塔。用水作萃取剂进行了萃取精馏分离醋酸甲酯和甲醇的共沸物的实验研究,探讨了溶剂比、回流比、原料液温度和萃取剂温度等主要影响因素的改变对萃取精馏过程的影响。本文建议采用的操作条件:溶剂比为2-3;回流比为0.75-1.0;进料温度为泡点温度;萃取剂温度为常温。  相似文献   

13.
利用隔离壁萃取精馏塔分离甲乙酮/水的共沸物。考察了溶剂比、回流比和进料速度对分离过程的影响。当溶剂比为3、回流比为3.5、进料速度为1.6 mL/min时,塔顶甲乙酮的质量分数达到98.8%,塔釜乙二醇质量分数达到96.3%。利用Asp-en Plus对该新工艺进行了模拟。结果表明,模拟值与实验值相一致。此新工艺比常规萃取精馏工艺节能5.6%。  相似文献   

14.
通过一个常规间歇萃取精馏实验装置,考察三元混合溶剂(NMP+DMF+DMSO)在不同回流比及萃取溶剂加入速率情况下对分离苯-环己烷共沸体系的影响.实验结果表明,三元混合溶剂能够解决单一溶剂存在的选择性与溶解性相矛盾的问题,且三元混和溶剂存在最佳组成,综合性能优于单一溶剂;随溶剂加入速率和操作回流比的增加,产品产量逐渐提高,尤其是混合溶剂间歇萃取精馏技术与简单溶剂间歇萃取精馏技术相比并不复杂.  相似文献   

15.
四氢呋喃—水恒沸物萃取精馏过程的三塔优化计算   总被引:1,自引:0,他引:1  
以1mol产品需要的能耗为目标函数,采用复合形优化方法对萃取精馏过程进行了优化计算,其结果表明当萃取精馏塔的塔板数为12块、进料位置为第8块、溶剂比为0.96、回流比为0.88、产品的流量为0.61mol/h;溶剂1,4—丁二醇回收塔的塔板数为12块,回流比为0.66;四氢呋喃提浓塔的塔板数为7块,回流比为0.80时,该萃取精馏过程不仅满足产品的纯度99.0%的要求,而且能耗最低。  相似文献   

16.
废液中环己烷的回收   总被引:1,自引:0,他引:1  
研究了乙醇环己烷废液的回收方法.用水作萃取剂,采用萃取-精馏方法、得到相对含量为99. 91%的产品.  相似文献   

17.
四氢呋喃—水恒沸物的萃取精馏   总被引:5,自引:2,他引:3  
提出了用1,4丁二醇(BD)作萃取剂对四氢呋喃水恒沸物进行萃取精馏分离,并对溶剂的选择性进行了研究.通过萃取精馏的小试,其产品的纯度可超过97%.  相似文献   

18.
碳酸二甲酯与甲醇分离的模拟研究   总被引:4,自引:1,他引:3  
碳酸二甲酯(DMC)与甲醇形成共沸物,常规精馏无法实现直接分离。采用变压精馏、共沸精馏、萃取精馏3种特殊精馏流程来分离该物系,经商业流程模拟软件Aspenplus全流程模拟得出各流程适宜的操作参数。结果表明,3种流程都可得到较高纯度的DMC产品,但变压精馏较其他2流程得到的产品纯度更高,流程也相对简单。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号