共查询到15条相似文献,搜索用时 62 毫秒
1.
针对原始风速信号非线性和非平稳性的特征,提出一种新的改进经验小波变换(IEWT)方法,该方法可将风速信号分解成一组有限带宽的子序列,以降低其不稳定性.在此基础上,结合最小二乘支持向量机(LSSVM),提出基于改进经验小波变换和最小二乘支持向量机(IEWT-LSSVM)的短期风速预测方法,并通过模拟退火粒子群优化算法(S... 相似文献
2.
基于蚁群优化的最小二乘支持向量机风速预测模型研究 总被引:1,自引:0,他引:1
基于最小二乘支持向量机理论,建立风速预测模型。同时,由于最小二乘支持向量机参数选取尚无有效方法,该文尝试采用蚁群算法理论来进行参数优化选择。选取某风场前四天的实测风速(采样间隔30min),应用所建立的风速预测模型,来预测第五天的48个风速值,其预测的平均绝对百分比误差仅为9.53%,预测效果较理想,验证了应用蚁群优化算法理论与最小二乘支持向量机理论进行风速预测的可行性,可为风电场规划选址和风力发电功率预测等提供理论支持。 相似文献
3.
最小二乘支持向量机在大坝变形预测中的应用 总被引:11,自引:5,他引:11
介绍了基于统计学习理论的一种新的机器学习技术———支持向量机(SVM)和其拓展方法———最小二乘支持向量机(LSSVM),并将LSSVM算法应用于混凝土大坝安全监控中的变形预测。根据实测数据,建立了基于LSSVM算法的大坝变形预测模型,同时与经典SVM预测模型进行分析比较。结果表明,LSSVM和经典SVM算法在大坝变形预测中都具有较好的可行性、有效性及较高的预测精度;LSSVM在算法的学习训练效率上比SVM有较大的优势,更适合于解决大规模的数据建模。 相似文献
4.
提出了一种基于偏最小二乘支持向量机的负荷预测模型.首先通过偏最小二乘(PLS)对负荷数据进行成分提取,提取的成分具有线性特点,并消除输入因素的多重相关性,然后采用支持向量机方法(SVM)对提取的成分进行预测.算例表明,该算法用于短期负荷预测建模速度快,预测精度高,是种行之有效的方法. 相似文献
5.
针对风速时间序列不稳定导致其难以准确预测的问题,提出一种基于最优变分模态分解(OVMD)和蝙蝠算法(BA)优化最小二乘支持向量机(LSSVM)的短期风速预测模型。采用OVMD技术,将原始风速时间序列先分解为若干个相对稳定的分量序列,然后对各个分量分别建立LSSVM模型进行预测,并采用蝙蝠算法优化LSSVM中的参数,最后对优化的分量预测模型的预测值求和,即得到原始风速序列的预测值。算例分析表明,该模型具有较高的预测精度,能有效跟踪风速的变化规律。研究成果为短期风速预测提供了新思路。 相似文献
6.
生物质的热值与其组成成分有关,基于此,应用最小二乘支持向量机方法建立了生物质热值预测的有效模型,并利用Biomass Feedstock Composition and Properties Database数据库提供的数据进行了测试。以该数据库的部分生物质的固定碳、挥发分和灰分含量作为输入,以相应的热值作为输出,训练最小二乘支持向量机。训练完成后,用剩余的生物质进行测试。测试结果表明,预测方法准确,速度较快。与神经网络方法相比,基于最小二乘支持向量机的生物质的热值预测方法更有效。 相似文献
7.
8.
为提高大坝变形预测精度,提出了一种基于经验模态分解(EMD)和支持向量机(SVM)的大坝变形预测新算法(EMD-SVM)。该算法先对大坝位移序列进行经验模态分解,有效分离出隐含在时序中的非线性高频波动成分和低频趋势成分;然后应用支持向量机对各分量进行建模预测;最后叠加各分量预测值得到预测结果。通过算例验证,并与BP神经网络、支持向量机对比分析表明,该算法具有较强的泛化能力和自适应拟合能力,能在一定程度上保证较优的局部预测值和较好的全局预测精度,在大坝变形预测中具有一定的实用价值。 相似文献
9.
基于加权最小二乘支持向量机的月度负荷预测 总被引:1,自引:0,他引:1
考虑到实际电力负荷预测中各数据的重要程度并不相同,在标准最小二乘支持向量机回归算法的训练样本中设置权值系数,建立了加权最小二乘支持向量机模型,以实现样本的优化选择,达到历史数据"重近轻远"的学习效果;同时考虑到粒子群优化算法收敛速度快和混沌运动遍历性、随机性等特点,提出了一种基于混沌思想的粒子群优化算法对模型参数进行优化,引入优势粒子和劣势粒子的权重自适应调节机制,使算法具有动态适应性。将改进的模型应用于江西省萍乡市月度负荷预测中,结果表明本文方法与常规方法相比降低了预测误差,且速度较快。 相似文献
10.
支持向量机的训练速度慢.制约了它的发展和推广应用。Suykens提出了一种新的支持向量机方法——最小二乘支持向量机。最小二乘支持向量机是支持向量机的发展和改进,它采用等式约束替代不等式约束,求解速度大大加快。将其用于大坝的渗流监测中.并与传统的支持向量机进行了比较,结果显示二者的预测效果都比较好.但是最小二乘支持向量机的训练效率比支持向量机要高。 相似文献
11.
基于SVM方法的风电场短期风速预测 总被引:2,自引:3,他引:2
针对基于支持向量机的风电场短期风速预测进行研究.选择了不同的输入向量(历史风速时间序列,历史风速和温度.历史风速、温度和风向,历史风速、温度和时间)作为输入进行误差对比分析。实测数据及分析结果表明,采用历史风度和温度的二输入模型,预测效果最佳,为风速的短期预测和发电量预测提供了较好的参考价值。 相似文献
12.
13.
采用现有方法预测短期变速恒频风力发电系统的风速时,因未分析风力机的运行特性而导致无法准确预测系统的输出无功功率、输出有功功率和短期风速,且预测结果的平均绝对误差和均方误差大,为此提出变速恒频风力发电系统风速的预测方法。首先对风力机的运行特性进行分析,然后采用支持向量机回归算法构建风速预测模型,最后利用风速预测模型完成变速恒频风力发电系统风速的短期预测。实验结果表明,所提方法可准确地预测系统的输出无功功率、输出有功功率和短期风速,且预测结果的平均绝对误差和均方误差小,验证了所提方法的整体有效性。 相似文献
14.
考虑到风速时间序列非平稳特性和时序关联难以建模的问题,提出一种基于变分模态分解和深度门控循环网络的风速短期预测模型。该模型首先使用变分模态分解非递归地将原始风速序列分解为预先设定层数的子分量,以期降低原始序列的不平稳度,使用深度门控网络分别对各子分量建模预测,最后叠加各分量的预测结果,得到风速的预测结果。实例研究表明所提模型能够有效地跟踪风速的变化,具有较高的短期预测精度。 相似文献