首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper introduces a new approach for joint convolutional coding and decision feedback equalization (DPE). To minimize error propagation, the DFE uses a combination of soft decisions and delayed tentative decisions to cancel intersymbol interference (ISI). Soft decisions are obtained by passing the DFE output through a (soft) nonlinear device. This simple method is shown to perform almost as well as an optimum soft feedback approach on wireless channels with diversity. Tentative decisions from the Viterbi decoder are used to cancel ISI due to multipath with large delays, thus remedying the increasing effect of error propagation in channels with large delay spreads. We consider the use of this soft/delayed feedback DFE (S/D-DFE) technique in broadband wireless channels (with delay spreads up to several tens of the symbol period) typical in high-bitrate mobile data applications. Simulation results indicate that the proposed joint coding and S/D-DFE technique performs to within 1-2 dB [in required signal-to-noise ratio (SNR)] of an ideal coded DFE without error propagation. When combined with antenna diversity and a reduced-complexity DFE concept with adaptive feedforward tap assignment, it provides high packet throughput against Rayleigh fading, severe delay spreads, and high Doppler rates  相似文献   

2.
The author presents a theory on MMSE (minimum mean-squared error) decision-feedback equalization which augments previously published results by allowing both a correlated symbol sequence and a fractionally spaced DFE (decision-feedback equalizer) forward filter. This theory facilitates calculating the potential DSL (digital subscriber line) transmission performance in cases of correlated line codes, especially for situations where one or both of the DFE filters are infinite in length. The situation of an infinite-length DFE is of interest because it provides information on the limit of MMSE equalization and can thus serve as a benchmark against which the performance of a finite-length DFE may be compared. The author also presents a few numerical examples of the performance of MMSE decision-feedback equalization in DSL transmission at ISDN (integrated services digital network) basic access rates with several well-known line codes  相似文献   

3.
In this paper, novel and yet simple techniques are presented to minimize the error propagation caused by the large precursors and postcursors of the decision feedback equalizer (DFE) in 8VSB DTV system. A technique that selects a reference tap (symbol timing of DFE) from an estimated channel impulse response (CIR) is presented to minimize the effect of the large precursors. Another technique that selects the reference tap position, i.e., decision delay in a feedforward filter (FFF), from the estimated CIR and the amplitude of the selected reference tap is proposed to minimize the effect of large postcursors. The combined structure of a feedback filter (FBF) and Viterbi decoder for use in 8VSB DTV system is also proposed to replace the past unreliable decision symbols in FBF as well as to reduce the decision error probability. Simulation results show that our proposed DFE can prevent effectively the error propagation, in particular, by changing the reference tap and its position in FFF according to the channel condition. It is also shown that an echo removing capability of the proposed DFE, where 400 and 620taps are used for the FFF and FBF, respectively, is greater than that of conventional DFEs by about -20 mus in the single pre-echo of -10 dB channel and by about 10 mus in the single post-echo of -1 dB channel  相似文献   

4.
This paper is a mathematical analysis of digital subscriber lines that use adaptive decision feedback equalization (DFE). Adaptive transversal feedforward filters (FFF) and feedback filters (FBF) with baud rate sampling are assumed. In order that all block codes are considered in the model, correlation between the values of the transmitted symbol values is included. Additionally, added noise is not assumed to be white, to permit the eyaluation of the effects of near end crosstalk and residual echo noise. It is shown that the correlation between the transmitted symbols causes the FBF to adapt differently than they usually do (i.e., cancel intersymbol interference within the range of the FBF) in two ways: the FBF uses the correlation between transmitted symbols to reduce the intersymbol interference outside of its range, and a bias vector is added to the FBF tap weights that adjusts future slicing levels to account for the variable likelihood of future transmitted symbol values. It is found that the received signal-to-noise ratio is approximately a linear function of loop insertion loss when the loss is high and noise is low.  相似文献   

5.
For the class of equalizers that employs a symbol-decision finite-memory structure with decision feedback, the optimal solution is known to be the Bayesian decision feedback equalizer (DFE). The complexity of the Bayesian DFE, however, increases exponentially with the length of the channel impulse response (CIR) and the size of the symbol constellation. Conventional Monte Carlo simulation for evaluating the symbol error rate (SER) of the Bayesian DFE becomes impossible for high channel signal-to-noise ratio (SNR) conditions. It has been noted that the optimal Bayesian decision boundary separating any two neighboring signal classes is asymptotically piecewise linear and consists of several hyperplanes when the SNR tends to infinity. This asymptotic property can be exploited for efficient simulation of the Bayesian DFE. An importance sampling (IS) simulation technique is presented based on this asymptotic property for evaluating the lower bound SER of the Bayesian DFE with a multilevel pulse amplitude modulation (M-PAM) scheme under the assumption of correct decisions being fed back. A design procedure is developed, which chooses appropriate bias vectors for the simulation density to ensure asymptotic efficiency (AE) of the IS simulation  相似文献   

6.
The paper analyzes the error propagation phenomenon in the decision feedback equalizer (DFE) for the receivers of Advanced Television Systems Committee (ATSC) digital television (DTV) and presents the performance upper-limits of the DFE by comparing various error propagation cases and the no-error propagation case. As one approach to the performance limit, we consider a blind DFE, adopting a trellis decoder with a trace-back depth of 1 as a decision device. Through simulation, we show how much the DFE performance in ATSC DTV receivers is affected by error propagation. We found that while blind equalization is preferable to decision-directed (DD) equalization at signal-to-noise ratio (SNR) values less than 18 dB, DD equalization is superior to blind equalization at SNR values greater than 18 dB. In addition, symbol error rate curves quantitatively show that the performance difference in the DFE caused by error propagation becomes clearer at the trellis decoder following the DFE. The analysis results presented are very informative for developing equalization algorithms for ATSC DTV receivers.  相似文献   

7.
Decision feedback equalization   总被引:4,自引:0,他引:4  
As real world communication channels are stressed with higher data rates, intersymbol interference (ISI) becomes a dominant limiting factor. One way to combat this effect that has recently received considerable attention is the use of a decision feedback equalizer (DFE) in the receiver. The action of the DFE is to feed back a weighted sum of past decision to cancel the ISI they cause in the present signaling interval. This paper summarizes the work in this area beginning with the linear equalizer. Three performance criteria have been used to derive optimum systems; 1) minimize the noise variance under a "zero forcing" (ZF) constraint i.e., insist that all intersymbol interference is cancelled, 2) minimize the mean-square error (MMSE) between the true sample and the observed signal just prior to the decision threshold, and 3) minimize the probability of error (Min Pe). The transmitter can be fixed and the receiver optimized or one can obtain the joint optimum transmitter and receiver. The number of past decisions used in the feedback equalization can be finite or infinite. The infinite case is easier to handle analytically. In addition to reviewing the work done in the area, we show that the linear equalizer is in fact a portion of the DFE receiver and that the processing done by the DFE is exactly equivalent to the general problem of linear prediction. Other similarities in the various system structures are also shown. The effect of error propagation due to incorrect decisions is discussed, and the coaxial cable channel is used as an example to demonstrate the improvement available using DFE.  相似文献   

8.
In this correspondence we derive the finite-length, minimum mean-squared error decision feedback equalizer (MMSE-DFE). We include decision delay as an explicit parameter. Our derivation yields an algebraic interpretation of the effect of decision delay on DFE performance (measured by mean-squared error). It also allows the fast computation of the MMSE-DFE for several different values of both decision delay and the number of feedback taps. Our approach is especially useful for short filter lengths, when the decision delay can significantly affect DFE performance  相似文献   

9.
Consider finite-rate channel-direction feedback in a system with multiple transmit but single receive antennas. We investigate how the transmitter should be optimized for symbol error rate with finite-rate feedback, and how the symbol error rate and outage probability improve as a function of the number of feedback bits. It is found that when the number of feedback directions is equal to or larger than the number of transmit antennas, transmit beamforming is optimal. Otherwise, the antennas should be divided into two groups, where antenna selection is used in the first group to choose the strongest channel, and equal power allocation is used in the second group. At high signal to noise ratio (SNR), the optimal power allocation between these two antenna groups is proportional to the number of antennas in each group. Based on high SNR analysis, we quantify the power gain of each feedback bit. It is shown that the incremental gain increases initially and diminishes when the number of feedback bits surpasses the logarithm (base 2) of the number of transmit antennas.  相似文献   

10.
A symbol decision feedback equalization (DFE) technique is developed for demodulating complementary code keying (CCK) signals. The efficacy of the proposed receiver is demonstrated on the physical layer (PHY) specified in the IEEE 802.11b wireless local area network (WLAN) standard. Packet error rate (PER) performance is compared with that of the conventional RAKE receiver. The proposed receiver structure and its low complexity variations demonstrate significant performance advantages over the RAKE receiver, especially in severe multipath channels. While a large delay spread can limit the performance of two low-complexity variations discussed here, performance of the optimal symbol DFE receiver is not limited by delay spread as long as the channel signal-to-noise ratio (SNR) is sufficiently high.  相似文献   

11.
设计了频率选择信道基于RLS算法的自适应判决反馈均衡MIMO-DFE空时接收机,由于这种接收机不需要信道识别,从而降低了接收机的复杂度。通过蒙特卡罗仿真评估了接收机在频率选择信道下的误符号率性能。仿真结果表明,在不加信道编码的情况下,该接收机在信噪比为 14dB时误符号率达到 10-3以下。  相似文献   

12.
Joint equalization and coding for intersymbol interference channels   总被引:1,自引:0,他引:1  
We present a novel scheme that combines decision feedback equalization (DFE) with high-rate error-detection coding in an efficient manner. The proposed scheme is shown to considerably outperform the conventional practice on channels with high SNR, such as those encountered in twisted-pair telephony systems. In order to analyze the performance of our method, we introduce an approximate mathematical model taking into account the error propagation phenomenon. Based on this model, upper and lower bounds on the overall probability of error are developed. These show that a simple low-redundancy error-detecting code, when properly integrated with the equalizer, can make the overall probability of error several orders of magnitude lower than that obtained with the conventional DFE, or with a DFE followed by an error-correcting code. Computer simulations of the proposed method have been performed for several channels, including the so-called high-bit-rate digital subscriber line (HDSL) test-loop 4, which is known to have a considerable amount of intersymbol interference. For all these channels, our results show that a reduction in the probability of error by more than three orders of magnitude can be obtained using codes of rate 0.96 and above. This, in turn, translates into power savings (coding gain) of 2.5 to 3 dB  相似文献   

13.
Blind detection of equalization errors in communication systems   总被引:3,自引:0,他引:3  
In adaptive channel equalization, transmitted symbol estimates at the equalizer output may be in error because of excessive channel noise, convergence of the equalizer to a “closed-eye” local minimum, or error propagation if the equalizer has a decision feedback structure. This paper is concerned with the detection of equalization errors (i.e., errors in transmitted symbol estimates) in a blindfolded manner whereby no direct access to the channel input is required. The detection problem is cast into a binary hypothesis testing framework. Assuming a linear communication channel that is time-invariant during the test interval, a relationship between the presence of equalization errors and time variations in the underlying linear model taking the transmitted symbol estimates to the equalizer input is established. Based on this relationship, a uniformly most powerful test is constructed to detect the presence of equalization errors in finite-length observations. Finite sample size and asymptotic detection performance of the test is studied. A method for estimating the equalization delay without direct access to the channel input is developed. The effectiveness of the test is illustrated by way of computer simulations  相似文献   

14.
判决反馈均衡器(Decision Feedback Equalizer,DFE)能补偿具有严重符号间干扰(Inter Symbol Interference,ISI)的信道,且不存在线性均衡器增强噪声的影响。而在其基础上改进的运用误差反馈的DFE,可利用误差反馈滤波器来减少传统DFE中存在的误差信号的相关性,同时其硬件实现的复杂度没有明显提高。理论分析和仿真表明,这种方法比传统的DFE更有效,特别是针对信道有严重符号间干扰的情况。  相似文献   

15.
We investigate a chip-level minimum mean-square-error (MMSE) decision-feedback equalizer (DFE) for the downlink receiver of multicode wideband code-division multiple-access systems over frequency-selective channels. First, the MMSE per symbol achievable by an optimal DFE is derived, assuming that all interchip interference (ICI) of the desired user can be eliminated. The MMSE of DFE is always less than or at most equal to that of linear equalizers (LE). When all the active codes belong to the desired user, the ideal DFE is able to eliminate multicode interference (MCI) and approach the performance of the single-code case at high signal-to-noise ratio (SNR) range. Second, we apply the hypothesis-feedback equalizer or tentative-chip (TC)-DFE in the multicode scenario. TC-DFE outperforms the chip-level LE, and the DFE that only feeds back the symbols already decided. The performance gain increases with SNR, but decreases with the number of active codes owned by the other users. When all the active codes are assigned to the desired user, TC-DFE asymptotically eliminates MCI and achieves single-user (or code) performance at high SNR, similarly, to the ideal DFE. The asymptotic performance of the DFE is confirmed through bit error rate simulation over various channels.  相似文献   

16.
Based on the fact that a decision feedback equaliser (DFE) can be divided into a linear equaliser and a prediction error filter with feedback, a new blind adaptation method for the DFE is proposed. The proposed method provides reliable convergence and the resulting symbol error rate is very close to that of the DFE using a training sequence  相似文献   

17.
There is great interest in the use of decision feedback equalization (DFE) to mitigate the effects of intersymbol interference (ISI) on wireless multipath fading channels. The coefficients of a DFE feedforward filter (FFF) and feedback filter (FBF) are usually adjusted based on the minimum mean square error (MMSE) criterion. The equalizer coefficients can be calculated by recursive adaptation or by direct computation based on a channel estimate. The equivalence of the simultaneous and separate MMSE optimization of the FFF and FBF of a finite-length DFE is established  相似文献   

18.
A new type of blind decision feedback equalizer (DFE) incorporating fixed lag smoothing is developed in this paper. The structure is motivated by the fact that if we make full use of the dependence of the observed data on a given transmitted symbol, delayed decisions may produce better estimates of that symbol. To this end, we use a hidden Markov model (HMM) suboptimal formulation that offers a good tradeoff between computational complexity and bit error rate (BER) performance. The proposed equalizer also provides estimates of the channel coefficients and operates adaptively (so that it can adapt to a fading channel for instance) by means of an online version of the expectation-maximization (EM) algorithm. The resulting equalizer structure takes the form of a linear feedback system including a quantizer, and hence, it is easily implemented. In fact, because of its feedback structure, the proposed equalizer shows some similarities with the well-known DFE. A full theoretical analysis of the initial version of the algorithm is not available, but a characterization of a simplified version is provided. We demonstrate that compared to the zero-forcing DFE (ZF-DFE), the algorithm yields many improvements. A large range of simulations on finite impulse response (FIR) channels and on typical fading GSM channel models illustrate the potential of the proposed equalizer  相似文献   

19.
In this paper, we propose the analytical approach for amplify-and-forward (AF) opportunistic relaying schemes (ORS). When operation of AF-ORS consists of relay selection and data transmission phases based on pilot symbol assisted-channel estimation (PSA-CE) methods over quasi-static Rayleigh fading channels, we show that the relay selection phase can be implemented by pilots symbols transmission for source-relay and relay-destination. Moreover, the feedback method for the selected relay index is proposed to have a simple fashion. Then, we investigate the effects of both a channel estimation error and an estimated noise variance, which are obtained by PSA-CE methods, on the received signal-to-noise ratio (SNR). The average SNR loss is also derived in terms with the number of pilots in PSA-CE methods. Moreover, the average symbol error rate, the outage probability, and the normalized channel capacity of the ORS are derived in approximated closed-form expressions for an arbitrary link SNR when the channel state information in the source-relay-destination link is estimated based on transmitted pilots symbols. As the number of pilot symbols, the derived analytical approach is verified, and by comparing it with simulation results, the accuracy is demonstrated. In addition, it is verified that the effect of the feedback error can be neglected for PAS-CE methods over quasi-static fading channels.  相似文献   

20.
Expressions are developed for the probability of error for asynchronous frequency-hop spread-spectrum multiple-access networks using Markov hopping patterns and binary frequency shift keying (BFSK) with one symbol transmitted per hop. The expressions are exact when there is one interfering user and orthogonal BFSK is used. They provide excellent approximations when there are more than one interfering user. It is also shown that the error probability when Markov hopping patterns are used is a good approximation to the error probability when memoryless hopping patterns are used. By computing the channel capacity and the associated throughput, a simple hard decision receiver is shown to perform much better than a receiver using perfect side-information to erase the symbols transmitted on hops that were hit when all the users have the same power and one binary symbol is transmitted per hop  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号