首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A new graft copolymer, poly(ε-caprolactone) (PCL) grafted with poly(ethylene glycol) (PEG), was prepared by one-pot synthesis of ε-caprolactone and modified PEG. Aluminium isopropoxide or potassium tert-butoxide was used as a catalyst for the ring-opening polymerization. Polymerization using potassium tert-butoxide as a catalyst showed very effective graft reaction of PEG onto poly(ε-caprolactone). A slight decrease in the melting temperature was observed with the increase of the PEG graft frequency. Interestingly, considerable changes were observed on the surface property by the introducing PEG side chains compared to that of PCL homopolymer. Measurements of water contact angle showed that the hydrophilic surface of the polymer could be obtained even at a low graft frequency of PEG.  相似文献   

2.
The poly(ethylene glycol) (PEG)‐grafted styrene (St) copolymer, which was formed as a nanosphere, was used as an agent to modify the surface of poly(ethylene terephthalate) (PET) film. The graft copolymer was dissolved into chloroform and coated onto the PET film by dip–coating method. The coated amount depends on the content ratios of PEG and St, the solution concentration, and the coating cycles. The graft copolymers having a low molecular weight of PEG‐ or St‐rich content was fairly stable on washing in sodium dodecyl sulfate (SDS) aqueous solution. It was confirmed that the PET surface easily altered its surface property by the coating of the graft copolymers. The contact angles of the films coated with the graft copolymers were very high (ca. 105–120°). The coated film has good antistatic electric property, which agreed with PEG content. The best condition of coating is a one‐cycle coating of 1% (w/v) graft copolymer solution. The coated surface had water‐repellency and antistatic electric property at the same time. The graft copolymer consisted of a PEG macromonomer; St was successfully coated onto PET surfaces, and the desirable properties of both of PEG macromonomer and PSt were exhibited as a novel function of the coated PE film. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1524–1530, 1999  相似文献   

3.
Syndiotactic polystyrene-graft-poly(ethylene glycol) (sPS-g-PEG) copolymer was prepared by photochemical attachment of poly(ethylene glycol) chains to the benzoylated syndiotactic polystyrene (BesPS) backbone. BesPS, a functional polymer bearing benzophenone moiety, was prepared in a heterogeneous process through Friedel-Crafts acylation reaction using benzoyl chloride as benzoylating agent. This substrate was then dispersed in o-dichlorobenzene at room temperature and mixed with poly(ethylene glycol) , which was reacted with the benzophenone moieties by illumination with UV light (λ > 340 nm). As a result of the photochemical reaction, the hydrophilic poly(ethylene glycol) was chemically attached to the hydrophobic syndiotactic polystyrene backbone. The resultant copolymer was characterized by FT-IR, NMR, and X-ray photoelectron spectroscopy. In addition, the thermal properties of graft copolymers were also studied by means of DSC.  相似文献   

4.
Novel membrane materials for pervaporation separation of benzene/cyclohexane mixtures were prepared by the introduction of oligo(oxyethylene)s, such as diethylene glycol, poly(ethylene glycol) 200 (PEG200) and poly(ethylene glycol) 400 (PEG400) onto Nylon 6. The polymeric membranes from modified Nylon 6 thus prepared showed permselectivity toward benzene. Some membranes exclusively permeated benzene from benzene/cyclohexane mixture.  相似文献   

5.
A surface functionalization polypropylene was prepared by entrapment a copolymer of polypropylene‐grafted‐poly(ethylene glycol) into polypropylene. The effects of structure of copolymer, contact dies, and content of modifiers were studied. The results of attenuated total reflection infrared spectroscopy(ATR‐FTIR) and contact angle measurements indicated that PP‐g‐PEG could preferably diffuse onto the surface and effectively increase the hydrophilicity of PP. PPw‐g‐PEG with lower PEG contents, lower molecular weight of PPw and PEG had better selective enrichment on the surface of PP blend film. By grafting of PEG‐OH onto the MPP, PP macromolecular surface modifier with better solvent‐resistance than that of PEG can be achieved. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Poly(ethylene glycol)‐poly(L ‐lactide) diblock and triblock copolymers were prepared by ring‐opening polymerization of L ‐lactide with poly(ethylene glycol) methyl ether or with poly(ethylene glycol) in the presence of stannous octoate. Molecular weight, thermal properties, and crystalline structure of block copolymers were analyzed by 1H‐NMR, FTIR, GPC, DSC, and wide‐angle X‐ray diffraction (WAXD). The composition of the block copolymer was found to be comparable to those of the reactants. Each block of the PEG–PLLA copolymer was phase separated at room temperature, as determined by DSC and WAXD. For the asymmetric block copolymers, the crystallization of one block influenced much the crystalline structure of the other block that was chemically connected to it. Time‐resolved WAXD analyses also showed the crystallization of the PLLA block became retarded due to the presence of the PEG block. According to the biodegradability test using the activated sludge, PEG–PLLA block copolymer degraded much faster than PLLA homopolymers of the same molecular weight. © 1999 John Wiley amp; Sons, Inc. J Appl Polym Sci 72: 341–348, 1999  相似文献   

7.
Synthesis of poly(ethylene glycol)-polydimethylsiloxane amphiphilic block copolymers is discussed herein. Siloxane prepolymer was first prepared via acid-catalyzed ring-opening polymerization of octamethylcyclotetrasiloxane (D4) to form polydimethylsiloxane (PDMS) prepolymers. It was subsequently functionalized with hydroxy functional groups at both terminals. The hydroxy-terminated PDMS can readily react with acid-terminated poly(ethylene glycol) (PEG diacid) to give PEG-PDMS block copolymers without using any solvent. The PEG diacid was prepared from hydroxy-terminated PEG through the ring-opening reaction of succinic anhydride. Their chemical structures and molecular weights were characterized using 1H NMR, FTIR and GPC, and thermal properties were determined by DSC. The PEG-PDMS copolymer was incorporated into chitosan in order that PDMS provided surface modification and PEG provided good water swelling properties to chitosan. Critical surface energy and swelling behavior of the modified chitosan as a function of the copolymer compositions and contents were investigated.  相似文献   

8.
Xiaolin Li  Jiacong Shen 《Polymer》2006,47(6):1987-1994
A novel hydroxyl-capped comb-like poly[poly(ethylene glycol) methacrylate] (PPEGMA) was prepared via atom transfer radical polymerization (ATRP) of α-methylacryloyl-ω-hydroxyl-poly(ethylene glycol) at ambient temperature. The polymerization kinetics of the block copolymer was studied by gel permeation chromatography (GPC) and 1H NMR. It is of interest to find the well-defined comb-like PEG can associate into micelles, which have hydrophilic PEG shell end-capped by hydroxyl groups. The hydroxyl in the shell were further cross-linked by divinyl sulfone (DVS), which could couple with two capped-end hydroxyl groups. The XPS, TEM, AFM and laser scattering particle size distribution analyzer results revealed that reactive micelles could be cross-linked by DVS. The reactive, cross-linkable micelles with PEG shell may have great potential as new drug carrier and nanoreactor, etc.  相似文献   

9.
以聚乙二醇接枝炭黑(PEG—g—CB)为导电粒子,不同相对分子质量的聚乙二醇(PEG)为基体,制备了PEG/PEG—g—CB纳米导电高分子复合材料,并研究了其气敏性能。结果发现,该复合材料在PEG极性溶剂蒸汽中电阻响应快,而在非极性溶剂蒸气中电阻几乎不改变;PEG的晶相结构以及CB的接枝与否对响应重复性有很大影响。  相似文献   

10.
Summary Interpolymer complexes of poly(itaconic acid) and poly(ethylene glycol) (PIA/PEG) were prepared by two different procedures: simple mixing of preformed PIA and PEG and by polymerization of itaconic acid on poly(ethylene glycol) as a template. Complex formation was attributed to hydrogen bond formation between the carboxyl group of PIA and the ether group of PEG. The two types of complexes were characterized by viscometric measurements, thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy and adhesive force measurements. The results indicate that complexes prepared by template polymerization have a stronger hydrogen bonding and hence more ordered structure and better mucoadhesive properties.  相似文献   

11.
A new approach, plasma-induced graft polymerization of poly(ethylene glycol) methacrylate (PEGMA), was used to introduce PEG graft chains with hydroxyl end groups onto a polyurethane (Tecoflex) surface. After argon plasma treatment and subsequent exposure to air, graft polymerization onto Tecoflex films was allowed to proceed in deaerated aqueous solutions of PEGMA at 60°C. The virgin, plasma-treated, and grafted films were characterized comparatively by means of attenuated total reflection infrared spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, measurement of contact angle, and protein adsorption. The Tecoflex film undergoes etching during argon plasma treatment, surface oxidation when exposed to air after plasma treatment, and surface restructuring in response to environment upon storage in air. The plasma-induced graft polymerization of PEGMA proved to be successful in introducing PEG graft chains with reactive hydroxyl end groups onto the surface. Grafted films with different surface grafting density of PEG were prepared. Grafted films with higher PEG content exhibit higher hydrophilicity, smoother topography, and lower fibrinogen adsorption. The hydroxyl end groups built onto the surface offer further possibilities of improving its biocompatibility by immobilizing bioactive molecules. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Polymer electrolytes based on a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresins with lithium salt and plasticizer were prepared with an in situ blending process to improve both the mechanical properties and the ionic conductivity (σ). The PEG/lithium perchlorate (LiClO4) complexes, including blends of cyanoethyl pullulan (CRS) and cyanoethyl poly(vinyl alcohol) (CRV), exhibited higher σ's than a simple PEG/LiClO4 complex when the blend compositions of CRS/CRV were 5 : 5 or 3 : 7 or than CRV alone. When the CRS/CRV blend was compared with a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) (CRM) in the same molar ratio, the σ values of the polymer electrolytes containing the CRM copolymer series were slightly higher than those of the CRS/CRV blends containing PEG/LiClO4 complexes. Moreover, the addition of cyanoresin to PEG/LiClO4/(ethylene carbonate–propylene carbonate) polymer electrolytes provided better thermal stability and dynamic mechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2402–2408, 2007  相似文献   

13.
This paper describes a shape memory behavior of graft copolymers poly(methyl methacrylate)-graft-poly(ethylene glycol) (PMMA-g-PEG). In shape memory test, the sample was deformed from its original shape to a temporary shape above glass transition temperature (Tg), cooled below Tg to fix the temporary shape, and subsequently heated above Tg for spontaneous recovery to the original shape. By grafting PEG onto PMMA backbone, shape memory ability was drastically enhanced than PMMA homopolymer. The shape recovery ratio was decreased with the increase in the shape deformation temperature. With considering a good miscibility of backbone and side chain in PMMA-g-PEG, this shape memory ability may be related to a physically cross-linked network structure by chain entanglement of the comb-like graft copolymer. Stress relaxation measurements were investigated in order to confirm the effect of the graft chains on the shape memory behavior.  相似文献   

14.
采用熔融缩聚法以钛酸四丁酯为催化剂,使单体发生酯交换反应,成功制备了一系列以聚乙二醇(PEG)为亲水软段,以聚丁二酸丁二醇酯(PBS)为硬段的嵌段共聚物,采用1H-NMR确定了共聚物的结构组成;采用DSC、吸水性测试及水解降解试验对嵌段共聚物性能表征,结果表明共聚物中两种链段的含量与原料投料比一致,具有可调控性。由于PEG的引入,使共聚物结晶性下降,亲水性和降解性得到显著改善。  相似文献   

15.
Organic–inorganic hybrid nanoparticles have been prepared by the direct facile esterification condensation under extremely mild conditions as ambient temperature, moisture and atmospheric pressure, and the resulting composite particles are characterized by ESCA, FTIR, TEM, DLS, TGA, DSC, and XRD techniques. Results show that this facile graft method has high graft efficiency and the grafted poly(ethylene glycol) (PEG) accounts for about 55 wt% of the total silica composites. The resulting silica nanoparticles have core-shell structure with PEG on the outside and SiO2 in the core. As a result, the dispersion behavior of nanoparticles and the thermal stability of the grafted PEG are improved by the formation of covalent ester bonds between PEG and the reactive silica nanoparticles. The PEG phase, however, is disturbed by the proximity of the oxide phase of SiO2. Consequently, less crystal or faulty crystal of PEG is resulted when PEG is grafted onto the surfaces of silica nanoparticles.  相似文献   

16.
A ladder-type poly(3,4-ethylenedioxythiophene)–poly(ethylene glycol)–polyurethane (PEDOT–PEG–PU) supramolecular network was successfully synthesized using graft copolymerization of hydroxymethyl-EDOT with isocyanate-terminated PEG–PU prepolymer. PEDOT functionalized as the frame for a ladder-type supramolecular structure and PEG–PU as the rung. The successful formation of supramolecular network was confirmed by analyzing the Fourier transform infrared spectroscopy. A series of PEDOT–PEG–PU gel polymer electrolytes by linking the LiClO4 were prepared as a function of [O/Li+] ratios. The pH effect of their electrical capacitances was investigated using cyclic voltammetry. Ionic conductivities of different PEDOT–PEG–PU/Li+ complexes at a fixed pH were also evaluated through impedance analysis.  相似文献   

17.
The objective of this study was to investigate the effects of the incorporation of ether linkages into polylactide (PLLA) chains and the time of biodegradation on the behavior of protein adsorption. The content of poly(ethylene glycol) (PEG) in PLLA/PEG copolymers is from 4.4 to 18.3 wt %, and the length of the PEG soft segment is 1000, 2000, and 6000 daltons. The bovine serum albumin (BSA) adsorption onto the biodegradable PLLA/PEG copolymers was carried out using ultraviolet spectroscopy. The surface tension of PLLA and PLLA/PEG was measured using a contact angle. The data show that the incorporation of PEG segments makes the copolymer more polar and, therefore, leads to a reduction of protein adsorption. As the hydrolysis of polymers proceeds, both PLLA and PLLA/PEG turn out to be more polar. However, the initial compositions of degraded PLLA/PEG have a weak influence on the protein adsorption onto its hydrolyzed surface with a substantially long duration of hydrolysis. This phenomenon is attributed to the hydrophobic interaction between polar PLLA/PEG and BSA. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
An implicit-solvent coarse-grained model for poly(ethylene glycol)/poly(lactic acid) (PEG/PLA) diblock copolymer is derived using the iterative Boltzmann inversion technique. The model is shown to be effective in reproducing the micellar core-shell structure of PEG/PLA diblock copolymer recently reported in experiments. Influence of block architecture on the aggregate morphology is investigated. Upon increasing the length of PLA block, the model predicts a morphological change from conventional spherical to anisotropic (e.g., lamellar or cylindrical) structure, in agreement with experimental findings. The current model is also noted to provide very rapid aggregation of the block copolymers, allowing observation of copolymer micelles in their equilibrium structures in a short simulation time.  相似文献   

19.
In this article, a series of amphiphilic graft copolymers, namely poly(higher α‐olefin‐copara‐methylstyrene)‐graft‐poly(ethylene glycol), and poly(higher α‐olefin‐co‐acrylic acid)‐graft‐poly(ethylene glycol) was used as modifying agent to increase the wettability of the surface of linear low‐density polyethylene (LLDPE) film. The wettability of the surface of LLDPE film could be increased effectively by spin coating of the amphiphilic graft copolymers onto the surface of LLDPE film. The higher the content of poly(ethylene glycol) (PEG) segments, the lower the water contact angle was. The water contact angle of modified LLDPE films was reduced as low as 25°. However, the adhesion between the amphiphilic graft copolymer and LLDPE film was poor. To solve this problem, the modified LLDPE films coated by the amphiphilic graft copolymers were annealed at 110° for 12 h. During the period of annealing, heating made polymer chain move and rearrange quickly. When the film was cooled down, the alkyl group of higher α‐olefin units and LLDPE began to entangle and crystallize. Driven by crystallization, the PEG segments rearranged and enriched in the interface between the amphiphilic graft copolymer and air. By this surface modification method, the amphiphilic graft copolymer was fixed on the surface of LLDPE film. And the water contact angle was further reduced as low as 14.8°. The experimental results of this article demonstrate the potential pathway to provide an effective and durable anti‐fog LLDPE film. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
A two‐step procedure was used to synthesize the cellulose acetate butyrate and poly(ethylene glycol) graft copolymer (CAB‐g‐PEG). By choosing the appropriate composition, the crosslinked graft copolymer or not could be obtained. Then, the CAB‐g‐PEG copolymer was blended with poly(3‐hydroxybutyrate) (PHB), to further improve the mechanical properties of PHB. The results indicated that PHB and CAB‐g‐PEG that were not crosslinked were miscible over the entire composition range. As the CAB‐g‐PEG copolymer increased in the PHB/CAB‐g‐PEG blends, the melting temperature of the blends decreased, the crystallization of PHB became more difficult, and the crystallinity of the blend and PHB phase all decreased. The tensile properties and impact strength of the PHB/CAB‐g‐PEG blends were superior to the PHB/CAB blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1471–1478, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号