首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nine formulations were processed into bologna with different ratios of soy protein isolate (SPI):sodium caseinate (SCA), i.e. 1:1, 1:2.5, 1:5, 5:1, 5:2.5, 5:5, 10:1, 10:2.5 and 10:5. The products were evaluated for yields, emulsion stability, physical measurements (shearforce-kgf and folding test) and taste panel evaluation. Formulations with 5:1 and 5:5 SPI:SCA had lower liquid loss resulting in higher yields while the others had poor emulsion stability and high liquid loss. Firmer texture was exhibited by formulations 1:1, 5:1 and 10:1 SPI:SCA but formulation with 1:1 SPI:SCA showed better gelation followed by 1:2.5, 1:5, 5:1, and 5:2.5. The other formulations had poor gelation and binding properties, especially formulation with 10:5 SPI:SCA. Sensory evaluation was carried out using 30 untrained panelists. Attributes evaluated were aroma, texture, chewiness, juiciness, saltiness, chicken taste and overall acceptance. Formulation with 5:1 SPI:SCA was more acceptable for texture, chicken taste and overall acceptance while formulation with 1:1 SPI:SCA was more acceptable for the chewiness, juiciness and saltiness attributes. There was no significant difference (P > 0.05) in aroma attribute, for all formulations.  相似文献   

2.
3.
A combination of adenoviral and retroviral vectors was used to construct second generation packaging cells that deliver marker genes to target cells. A vector based upon Moloney murine leukemia virus (MoMLV) was used to deliver marker genes, and an adenovirus-based delivery system was used to deliver MoMLV structural genes (gag pol and env) to cultured cells. The procedure transformed the cells into new retroviral producer cells, which generate replication-incompetent retroviral particles in the culture supernatant for transferring marker genes to target cells. The titer of the retroviral-containing supernatant generated from the second generation producer cells reached above 10(5) c.f.u./ml, which is comparable to the MoMLV-based producer cell lines currently used in human gene therapy trials. These observations suggest that this new gene transfer scheme is technically feasible. The vector and procedures may be adapted for experimental human gene therapy in which the new producer cells are transplanted into patients for continuous gene transfer.  相似文献   

4.
FMEV retroviral vectors combine the long terminal repeat of Friend mink cell focus-forming viruses with the 5' untranslated leader region of the murine embryonic stem cells virus. These modules were connected to achieve high transgene expression in hematopoietic progenitor and stem cells. Here, we report the cloning of safety-improved and versatile FMEV vectors allowing module-wise exchange of crucial elements for comparative studies. By transfer and expression of four different marker genes (neomycin phosphotransferase, lacZ, enhanced green fluorescent protein and truncated low affinity nerve growth factor receptor), we formally demonstrate that both the long terminal repeat and the leader contribute to the high expression of FMEV in transduced hematopoietic cells. Most prominent are the data recorded in the absence of selection in myelo-erythroid progenitor cells. Here, FMEV vectors mediate up to two orders of magnitude increased transgene expression levels when compared with vectors based on the Moloney murine leukemia virus.  相似文献   

5.
6.
Lentiviruses are potentially advantageous compared to oncoretroviruses as gene transfer agents because they can infect nondividing cells. We demonstrate here that human immunodeficiency virus type 1 (HIV-1)-based vectors were highly efficient in transducing purified human hematopoietic stem cells. Transduction rates, measured by marker gene expression or by PCR of the integrated provirus, exceeded 50%, and transduction appeared to be independent of mitosis. Derivatives of HIV-1 were constructed to optimize the vector, and a deletion of most of Vif and Vpr was required to ensure the long-term persistence of transduced cells with relatively stable expression of the marker gene product. These results extend the utility of this lentivirus vector system.  相似文献   

7.
Two highly related receptor tyrosine kinases, TIE and TEK, comprise a family of endothelial cell-specific kinase. We established monoclonal antibodies against them and performed detailed analyses on their expression and function in murine hematopoietic stem cells (HSCs). TIE and TEK were expressed on 23.7% and 33.3% of lineage marker-negative, c-Kit+ and Sca-1+ (Lin- c-Kit+ Sca-1+) HSCs that contain the majority of day-12 colony-forming units-spleen (CFU-S) and long-term reconstituting cells, but not committed progenitor cells. Lin- c-Kit+ Sca-1+ cells were further divided by the expression of TIE and TEK. TIE+ and TEK+ HSCs as well as each negative counterpart contained high proliferative potential colony-forming cells and differentiated into lymphoid and myeloid progenies both in vitro and in vivo. However, day-12 CFU-S were enriched in TIE+ and TEK+ HSCs. Our findings define TIE and TEK as novel stem cell marker antigens that segregate day-12 CFU-S, and provide evidence of novel signaling pathways that are involved in the functional regulation of HSCs at a specific stage of differentiation, particularly of day-12 CFU-S.  相似文献   

8.
Recent studies have opened the possibility that quiescent, G0/G1 hematopoietic stem cells (HSC) can be gene transduced; lentiviruses (such as HIV type 1, HIV) encode proteins that permit transport of the viral genome into the nucleus of nondividing cells. We and others have recently demonstrated efficient transduction by using an HIV-1-based vector gene delivery system into various human cell types including human CD34(+) cells or terminally differentiated neurons. Here we compare the transduction efficiency of two vectors, HIV-based and murine leukemia virus (MuLV)-based vectors, on untreated and highly purified human HSC subsets that are virtually all in G0/G1. The HIV vector, but not MuLV vector supernatants, transduced freshly isolated G0/G1 HSC from mobilized peripheral blood. Single-step transduction using replication-defective HIV resulted in HSC that expressed the green fluorescent protein (GFP) transgene while retaining their stem cell phenotype; clonal outgrowths of these GFP+ HSC on bone marrow stromal cells fully retained GFP expression for at least 5 weeks. MuLV-based vectors did not transduce resting HSC, as measured by transgene expression, but did so readily when the HSC were actively cycling after culture in vitro for 3 days in a cytokine cocktail. These results suggest that resting HSC may be transduced by lentiviral-based, but not MuLV, vectors and maintain their primitive phenotype, pluripotentiality, and at least in vitro, transgene expression.  相似文献   

9.
Elucidation of mechanisms that regulate hematopoietic stem cell self-renewal and differentiation would be facilitated by the identification of defined culture conditions that allow these cells to be amplified. We now demonstrate a significant net increase (3-fold, P < 0.001) in vitro of cells that are individually able to permanently and competitively reconstitute the lymphoid and myeloid systems of syngeneic recipient mice when Sca-1(+)lin- adult marrow cells are incubated for 10 days in serum-free medium with interleukin 11, flt3-ligand, and Steel factor. Moreover, the culture-derived repopulating cells continued to expand their numbers in the primary hosts at the same rate seen in recipients of noncultured stem cells. In the expansion cultures, long-term culture-initiating cells increased 7- +/- 2-fold, myeloid colony-forming cells increased 140- +/- 36-fold, and total nucleated cells increased 230- +/- 62-fold. Twenty-seven of 100 cultures initiated with 15 Sca-1(+)lin- marrow cells were found to contain transplantable stem cells 10 days later. This frequency of positive cultures is the same as the frequency of transplantable stem cells in the original input suspension, suggesting that most had undergone at least one self-renewal division in vitro. No expansion of stem cells was seen when Sca-1+TER119- CD34+ day 14.5 fetal liver cells were cultured under the same conditions. These findings set the stage for further investigations of the mechanisms by which cytokine stimulation may elicit different outcomes in mitotically activated hematopoietic stem cells during ontogeny and in the adult.  相似文献   

10.
To explore the modulatory effects of IL-2-activated NK cells on hematopoietic stem cell (HSC) engraftment further, we used fresh newborn liver cells (NLC) and IL-2-activated newborn liver cells (ANLC) as combined sources, respectively, of transplanted HSC and IL-2-activated NK cells free of contaminating CD3+ T cells. As previously found with adult IL-2-activated spleen cells, NLC cultured with IL-2 for 7 days exhibited lymphokine-activated killer (LAK) activity, veto activity, and natural suppressor activity, and enhanced both short-term and long-term stem cell engraftment by intact co-injected syngeneic and allogeneic NLC in totally MHC-mismatched lethally irradiated recipients. However, unlike adult IL-2-stimulated adult spleen cells, IL-2-activated NLC lacked CD3+ T cells and failed to induce lethal GVHD. FACS analysis and cell sorting experiments showed that the cells in ANLC which enhanced short-term HSC engraftment belonged to the relatively immature CD3-NK1.1-2B4+ NK cell subset. By contrast, cells belonging to the more mature CD3-NK1.1+2B4+ NK cell subset showed no HSC-enhancing effects. Identification and isolation in humans of similar NK cell enhancers of HSC could lead to a new approach to improving stem cell engraftment in MHC-mismatched recipients without increasing the risk of GVHD.  相似文献   

11.
12.
Two advances in murine embryonic stem (ES) cell technology and their applications for the study of hematopoietic stem cells (HSCs) are discussed in this article. First, ES cells induced to differentiate in vitro form hematopoietic lineages in a fashion that recapitulates the ontogeny of blood formation in the embryo. This system offers a unique opportunity to isolate, examine, and manipulate the most primitive hematopoietic progenitors. Second, targeted gene ablation (knockout) studies in ES cells have identified several genes that are required for normal hematopoiesis and may function in the formation, maintenance, and differentiation of HSCs. Insights into murine hematopoiesis gained through the study of ES cells generally should be applicable to other vertebrates, including humans.  相似文献   

13.
Bone marrow (BM) transplantation still must overcome multiple difficulties and should benefit from better understanding of stem-cell homing and mobilization. Here, we analyzed the involvement of several adhesion molecules in the two processes by treating mice with monoclonal antibodies against these molecules. Treatment of lethally irradiated mice grafted with isogeneic BM cells showed that at least two migration pathways are important for stem-cell homing to the BM, whereas only one of them is involved in lodging of colony-forming unit-spleen (CFU-S) in the spleen. We confirm that the VLA-4/VCAM-1 adhesion pathway is important for stem-cell homing to the BM only and show that CD44 is involved in CFU-S lodging in both BM and spleen. These results show that entry of CFU-S into the spleen is regulated. The observation that when one migration pathway is altered, CFU-S do not enter the BM via the other pathway may indicate that the two mechanisms involved in CFU-S homing into the BM are linked. The adhesion molecules VLA-4 and CD44 are also implied in the mobilization of stem cells into the blood stream of mice injected once with anti-VLA-4 or anti-CD44. Anti-VLA-4 administration led to a significant increase in circulating stem cells as early as 8 hours after treatment. Stem cells mobilized by anti-VLA-4 comprise cells with high self-renewal potential and thus may be used for long-term reconstitution of the hematopoietic tissue.  相似文献   

14.
间充质干细胞是一种能够从各种人成体组织分离出来的非造血多能干细胞,近年来,许多研究表明间充质干细胞具有免疫调节能力及促进组织重建等功能.就其在造血干细胞移植中的应用,如急慢性移植物抗宿主病(GVHD)、GVHD造成的移植失败、纯红细胞再生障碍性贫血及免疫性血小板减少性紫癜、出血性膀胱炎作以综述.  相似文献   

15.
Previous studies in rodent models have demonstrated the feasibility of gene transfer to the stem cells of the intestinal epithelium using ecotropic retroviral vectors delivered luminally. This report represents a next step toward targeting the human intestine as a site for somatic gene therapy. The first experiment assessed the viability of amphotropic retroviral vectors in the luminal environment. It was found that after 4 hr at 37 degrees C in luminal effluent, the loss of titer was no greater than when incubated in control media. Likewise, neither the vector nor the target cells were adversely affected by N-acetylcysteine, which is likely to be used as a preparatory agent for mucus removal. To determine whether human intestinal cells are transducible by these vectors, three colon carcinoma cell lines were studied: HT-29, T84, and Caco-2. All were transduced; however, the expression of the reporter gene was highest in the HT-29 cells. Subsequent studies using these cells showed that with regular stocks of vector, gene transfer peaked at a stock dilution of 1/10 and declined at full strength. This problem could be partially overcome by centrifugal concentration of the retroviral stocks. With this approach, gene transfer increased with increasing particles up to 10x regular stock titers but was inefficient at 100x. Overall, these findings provide encouraging evidence that amphotropic retroviral vectors may eventually be used for in vivo gene transfer into human intestinal epithelium. However, they also point to the need for improved methods of concentrating retroviral vectors.  相似文献   

16.
AW Nienhuis 《Canadian Metallurgical Quarterly》1994,20(1):141-7; discussion 147-8
The ability to insert a gene into hematopoietic stem cells and achieve lineage specific expression of the transferred gene within hematopoietic organs following bone marrow transplantation would create the potential to effectively treat many genetic and acquired diseases. The use of retroviral vectors to achieve this purpose has been investigated extensively in animal models and most recently, in humans. In the murine model, about 20-30% of repopulating stem cells can be genetically modified with a retroviral vector. Peripheral blood stem cells, mobilized by cytokine administration in splenectomized animals, are readily transduced and are capable of long-term reconstitution of transplant recipients with genetically modified cells. Similar protocols have been utilized to transduce highly purified stem cells from rhesus monkeys. Although long-term repopulation with cells that persistently express the transferred gene has been achieved, the frequency of cells containing the vector genome is only about 1-2%. Genetic marking of human bone marrow and peripheral blood cells has been utilized to investigate their potential for contributing to long-term reconstitution following autologous transplantation. Future work will focus on improving gene transfer efficiencies for specific therapeutic applications.  相似文献   

17.
The internal ribosome entry site (IRES) from the picornavirus family has frequently been used to express multiple genes from a polycistronic message in retroviral vectors. While examining factors affecting levels of gene expression in IRES-containing retroviral vectors, it was found that retroviral vectors expressing the two genes linked by IRES, the reporter gene and the selectable marker neo, produced significantly lower levels of protein than those containing a reporter gene alone. This observation has been made with various cDNA sequences. However, when the neo was replaced with a different cDNA, the level of gene expression was increased, often to the level achieved with a vector expressing a single gene, suggesting that the bacterial neo sequence has a negative effect on expression. Analysis of the steady-state RNA levels isolated from transfected packaging cells showed that the neo-containing retroviral vectors produced significantly lower levels of RNA than those lacking this bacterial sequence indicating that neo interferes with expression of the neighboring gene at the level of RNA. Furthermore, the order of genes in the IRES-neo-containing vectors appeared to be more important than in the vector lacking the neo sequence. Our results suggest that neo has to be used in the retroviral vector with care, especially when a high level gene expression is needed.  相似文献   

18.
Blood cells transplantation is largely replacing bone marrow transplantation because engraftment is more rapid. This accelerated engraftment is thought to be mediated by relatively mature committed hematopoietic progenitor cells. Herein, we have used a modified rhodamine (Rho) staining procedure to identify and purify Rho+/++ (dull/bright) and Rho- (negative) subpopulations of hematopoietic progenitor cells in murine cytokine-mobilized blood. The Rho+/++ cell population contained > 99% of committed progenitor cells with in vitro colony-forming ability. The Rho- cell population contained the majority of hematopoietic stem cells with in vivo marrow repopulating ability. The rate of hematopoietic reconstitution was identical in recipients of grafts containing only purified Rho- stem cells or purified Rho- stem cells in combination with large numbers of Rho+/++ committed progenitor cells. In contrast, transplantation of 3-fold more hematopoietic stem cells resulted in accelerated reconstitution, indicating that the reconstitution rate was determined by the absolute numbers of Rho- stem cells in the graft. In addition, we observed a 5- to 8-fold reduced frequency of the subset of hematopoietic stem cells with long-term repopulating ability in cytokine-mobilized blood in comparison to steady-state bone marrow. Our results indicate that hematopoietic stem cells and not committed progenitor cells mediate early hematopoietic reconstitution after blood cell transplantation and that relative to bone marrow, the frequency of stem cells with long-term repopulating ability is reduced in mobilized blood.  相似文献   

19.
The proto-oncogene c-fos was transiently upregulated in primitive hematopoietic stem (Lin-Sca-1(+)) cells stimulated with stem cell factor, interleukin-3 (IL-3), and IL-6. To investigate a role of the c-fos in hematopoietic stem cells, we used bone marrow (BM) cells from transgenic mice carrying the c-fos gene under the control of the interferon-alpha/beta-inducible Mx-promoter (Mx-c-fos), and fetal liver cells from c-fos-deficient mice. Prolonged expression of the c-fos in Lin-Sca-1(+) BM cells inhibited factor-dependent colony formation and hematopoiesis on a stromal cell layer by keeping them at G0/G1 phase of the cell cycle. These Lin-Sca-1(+) BM cells on a stromal layer entered into the cell cycle whenever exogenous c-fos was downregulated. However, ectopic c-fos did not perturb colony formation by Lin-Sca-1(+) BM cells after they entered the cell cycle. Furthermore, endogenous c-fos is not essential to cell cycle progression of hematopoietic stem cells because the factor-dependent and the stroma-dependent hematopoiesis by Lin-Sca-1(+) fetal liver cells from c-fos-deficient mice was not impaired. These results suggest that the c-fos induced in primitive hematopoietic stem cells negatively controls cell cycle progression and maintains them in a dormant state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号