首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为改善磷酸-聚苯并咪唑(PA-PBI)质子交换膜在燃料电池运行过程中磷酸浸出的问题以及进一步提高其质子传导率和机械强度,本文用高磺化度支链磺化聚醚醚酮(bSPEEK)与芳醚型聚苯并咪唑(OPBI)进行酸碱共混,利用流延法制备磷酸掺杂质子交换膜.结果 表明,共混膜中bSPEEK最佳含量为30%,共混膜的体积溶胀率降低26...  相似文献   

2.
采用溶胶-凝胶法分别在离子液体1-丁基-3-甲基咪唑四氟硼酸盐[BMim]BF4、1-丁基-吡啶四氟硼酸盐[BPy]BF4和1-丁基-3-甲基咪唑醋酸盐[BMim]Ac的辅助下制备可磁分离TiO2/CoFe2O4(TCF)光催化材料, 采用X射线衍射分析(XRD)、N2吸附-脱附分析(BET)和透射电子显微镜(TEM)研究了离子液体结构对可磁分离TiO2的结构和性能的影响。结果显示: 200 ℃焙烧后样品[BMim]BF4-TCF和[BPy]BF4-TCF有锐钛矿相TiO2 生成, 而样品[BMim]Ac-TCF和TCF只有经400 ℃焙烧才出现锐钛矿相的衍射峰。当焙烧温度为800 ℃时, 样品[BMim]BF4-TCF主要以锐钛矿相TiO2存在(相对含量为92.6%), 说明离子液体中含有[BF4-]基团能降低锐钛矿相的晶化温度和能提高锐钛矿相高温稳定性。400 ℃焙烧后[BMim]BF4-TCF和[BPy]BF4-TCF的比表面积分别为125.7和120.3 m2/g, 高于[BMim]Ac-TCF(77.8 m2/g)和不加离子液体所制备样品TCF(63.7 m2/g)。说明阴离子BF4-有利于形成较大比表面积的TiO2。在模拟太阳光照射120 min后, 经400 ℃焙烧后的样品[BMim]BF4-TCF、[BPy]BF4-TCF、[BMim]Ac- TCF对亚甲基蓝的降解速率分别为96%、87%、64%。  相似文献   

3.
通过共混的方法制备了含笼型聚倍半硅氧烷(POSS)星型拓扑结构嵌段共聚物的氧化石墨烯(GO)/笼型聚倍半硅氧烷-(聚甲基丙烯酸甲酯-共聚-磺化聚苯乙烯)(POSS-(PMMA26-b-SPS156)8)复合质子交换膜。通过研究复合质子交换膜的离子交换容量(IEC)、质子传导率、吸水率与溶胀率,考察了GO含量对复合质子交换膜性能的影响。研究发现:复合质子交换膜的离子交换容量随GO含量的增加而升高,吸水率和溶胀率随着GO加入而降低,在测定温度范围内复合质子交换膜均表现出较高的尺寸稳定性,GO的添加改善了纯聚合物膜在80℃失水导致传导率下降的问题,提高了质子交换膜的质子传导率,发现在相对湿度为100%、80℃时,GO含量为0.3wt%的复合质子交换膜的质子传导率约为纯聚合物膜的3.2倍。   相似文献   

4.
简要介绍了一类高性能聚合物—聚苯并咪唑的制备方法及其在高温质子交换膜燃料电池中的应用研究进展;阐述了磷酸掺杂聚苯并咪唑膜的质子传导机理,探讨了磷酸掺杂率对聚苯并咪唑膜的力学强度和质子导电率等性能的影响规律;并对今后磷酸掺杂聚苯并咪唑质子交换膜研究领域需要解决的关键问题进行了讨论.  相似文献   

5.
为了进一步提高质子交换膜在中高温时的质子导电率,文中以高磺化度的磺化聚芳醚酮砜(SPAEKS)和聚乙烯醇(PVA)为原料,通过溶液共混法制备了PVA不同含量的磺化聚芳醚酮砜/PVA复合膜。通过对复合膜的性能测试发现,PVA的引入提高了膜的热稳定性、吸水率和保水能力。而且SPAEKS/PVA复合膜的质子传导率高于SPAEKS膜,在80℃时,复合膜的质子传导率都在0.07 S/cm以上,能够满足中高温质子交换膜燃料电池的使用要求。  相似文献   

6.
以磺化聚苯醚(SPPO)和聚醚酰亚胺(PEI)为原料,采用溶液共混法制备了SPPO/PEI共混质子交换膜,并经扫描电镜(SEM)、热重分析、拉伸测试等对膜的结构和性能进行了表征。结果表明,共混膜较纯SPPO膜具有更高的热稳定性、力学性能和尺寸稳定性;SPPO与PEI之间的强烈氢键相互作用使两组分之间并未发生明显的相分离。PEI的引入虽使得共混膜的质子传导率有所下降,但对于PEI含量在40%以下的共混膜,其质子传导率仍维持在约10-2S/cm的数量级水平,能满足质子交换膜的要求。  相似文献   

7.
聚苯并咪唑膜材料改性研究进展   总被引:1,自引:0,他引:1  
介绍了聚苯并咪唑在质子交换膜燃料电池方面的应用,本文从共混改性,化学改性,磺化改性等几个方面介绍了改性聚苯并咪唑的研究状况和发展历程。  相似文献   

8.
构建具有核壳纤维结构的同轴电纺PFSA/PVDF质子交换膜.同轴纤维中的PFSA壳层纤维提供长程质子传输通道及高电导率,PVDF核层纤维提供强机械性能及抗溶胀性,同轴纤维限域效应将核壳层纤维中PFSA组分粘合,增强了PFSA和PVDF的界面结合.与共混浇铸膜与单轴电纺膜相比,同轴电纺膜在低溶胀条件下,表现出更高的机械强度、质子传导率和电池性能.同轴电纺膜最大拉伸强度达60.8 MPa,相较于单轴电纺膜(39.1 MPa)提高55.5%;其最大拉伸应变为180.2%,比浇铸膜提高了122.5%.80℃下,同轴电纺膜的质子传导率高达206.9 mS/cm,与Nafion 211相当,其峰值功率密度为941.7 mW/cm2,比浇铸膜提高80.9%,比单轴电纺膜(748.9 mW/cm2)提高25.7%.同轴电纺膜也显示出优异的阻气、抗氧化性能.研究表明同轴电纺质子交换膜用于燃料电池具有更好的前景.  相似文献   

9.
质子化后的聚苯并咪唑(PBI)膜因同时具备传输质子和阻隔钒离子能力,常被用作全钒液流电池(VRFBs)质子传导膜,但是较低的质子电导率严重影响其实际应用.本文通过使用氰乙基纤维素/离子液体(CEC@ILs)作为改性剂,直接掺杂到PBI基体中,构建了一系列PBI/CEC@ILs全钒液流电池质子传导膜.研究了其吸水率、面电阻、质子电导率、钒离子渗透率以及相应电池循环性能等性能.结果表明:CEC的掺杂能有效改善PBI的质子电导率,在电流密度120 mA/cm2下,PBI/CEC@ILs-3%的电压效率(EV)和能量效率(EE)可达81.8%、79.5%.经过300次循环后EE值仍可保持在78%以上,并且自放电时间600 h后电压没有明显下降,均优于PBI膜和Nafion115膜.  相似文献   

10.
以耐溶胀性能较好的磺化聚芳醚砜酮(SPPESK)和吸水性较强的磺化聚醚醚酮(SPEEK)为原料,制备了SPPESK/SPEEK共混质子交换膜。考察了共混膜的水吸收率,水溶胀度,甲醇水溶胀度,甲醇渗透率及质子传导率和力学性能。80℃时,共混膜具有适当的水吸收(101%)和溶胀度(34%),较低的甲醇水溶胀度(20%),较高的质子传导率(0.212 S/cm),与SPPESK膜相比,质子传导率提高了18%。SPEEK的加入改善了共混膜的柔韧性,断裂拉伸应变从16.48%提高到30.43%。  相似文献   

11.
用水热合成法制备MIL-53(Al),然后用后磺化法在其笼状结构中引入磺酸基团得到MIL-53(Al)-SO3H纳米级金属有机框架(MOF)多孔晶体材料,最后将MIL-53(Al)-SO3H掺杂到磺化酚酞侧基聚芳醚砜(SPES-C)高分子相中制备出一系列SPES-C/MIL-53(Al)-SO3H燃料电池用杂化质子交换膜(PEM)。扫描电镜观测结果表明,杂化质子交换膜内没有缺陷,MIL-53(Al)-SO3H在膜内分散均匀且两相的相容性好。热重分析结果证实,杂化膜具有优良的热稳定性。MIL-53(Al)-SO3H的加入,提高了杂化膜的吸水率、尺寸稳定性和质子传导率。在温度为80℃时填充量为5%(质量分数)的杂化膜其M-5的质子传导率达到0.15 S·cm-1,比纯SPES-C膜提高了32.5%且优于商用Nafion膜的质子传导率(0.134 S·cm-1)。  相似文献   

12.
高温质子交换膜的研究进展   总被引:1,自引:1,他引:0  
蔡聿星  刘闪闪  付念  丁会利 《材料导报》2016,30(11):57-62, 76
高温质子交换膜能解决传统燃料电池电极催化剂CO中毒、复杂的水热管理等问题,成为当今燃料电池发展研究的焦点。结合质子交换膜的结构与性能之间的关系,分析了分子结构设计对膜性能的重要影响,总结了接枝型、复合型质子交换膜、新型耐热交换膜的研究现状。对有机/无机粒子复合膜材料,磷酸掺杂聚苯并咪唑(PBI)、聚芳硫醚砜(PASS)等类型膜材料进行了评述,为高温质子交换膜的研究指明了方向。  相似文献   

13.
咪唑类离子液体(ILs)对CO2具有良好的亲和性和溶解性。离子液体与聚酰亚胺膜材料相结合,可以解决目前CO2难以分离和回收的问题。选用3种烷基链长度不同的离子液体与聚酰胺酸进行共混,通过高速搅拌器制备出一系列聚酰亚胺/离子液体共混膜,ILn含量为5%、10%、15%、20%。采用薄膜拉伸强度测试仪和气体透过仪对膜进行了测试。结果表明:离子液体共混的聚酰亚胺薄膜的力学性能相对于纯膜来说均有所提高。当离子液体为IL2,共混含量为20%时,膜对CO2的渗透性能最好,为1.5033Barrer,是纯膜的3倍;当离子液体为IL2,共混含量为15%时,膜对CO2/CH4的分离性能最好,为21.7859,约为纯膜的7倍。  相似文献   

14.
以KMnO4为锰源,在离子液体1-丁基-3甲基咪唑六氟磷酸盐[BMIM][PF6]水溶液中通过微波加热法制备了α-MnO2纳米线,并采用XRD和FESEM对产物的结构和形貌进行了表征。发现反应时间和离子液体对产物的形貌和尺寸起着关键作用,提出了反应机理。用循环伏安曲线、线性扫描曲线以及塔弗尔曲线在1mol/L的NaOH碱性溶液中研究了α-MnO2的电化学性能。结果表明,90℃微波辐照1h所得到的纳米线形貌最均一,平均直径为15nm、平均长度为2μm,且具有良好的电化学性能,有望作为催化剂应用在燃料电池上。  相似文献   

15.
燃料电池是一种高效的清洁能源技术,可缓解当今社会面临的能源和环境问题。质子交换膜燃料电池是一种重要的燃料电池类型,质子交换膜是其关键组件,起到传导质子、隔绝电子和阴阳两极的反应物的作用。质子交换膜燃料电池在低温下存在许多难以解决的问题,升高工作温度可以解决这些问题。因此需要开发高温低湿度下工作的膜材料。本文综述了高温质子交换膜的主要类型、制备与改性方法和质子传导机制,指出质子导体掺杂的聚苯并咪唑(PBI)类膜材料在高温低湿度下作为质子交换膜适用的巨大潜力,并探讨了复合PBI高温质子交换膜的制备、掺杂的质子导体类型和性能提升方法。最后本文归纳了高温质子交换膜面临的挑战,并指出了该类材料未来的研究方向,如设计合成新型质子导体、改善PBI抗氧化稳定性、调控膜微观结构来提升性能和开发新型聚合物电解质。  相似文献   

16.
通过亲核缩聚反应合成含二氮杂萘酮结构的磺化聚芳醚酮酮(SPPEKK),并经原位复合制备了磺化聚芳醚酮酮/磷酸硼(SPPEKK/BP04)复合质子交换膜.用核磁共振谱(1H-NMR)和FT-IR光谱表征纯膜及其复合膜结构,研究了BPO4的含量对复合膜的保水能力、热稳定性能、质子传导率以及复合膜中BPO4稳定性能的影响.结果表明,随着BPO4含量的增加,SPPEKK/BPO4的复合质子交换膜质子传导率逐渐增大.当BPO4含量达到30%时,质子传导率达到6.3×10-2S/cm(90℃).用原位生成法制备的SPPEKK/BPO4在保持一定尺寸稳定性和热稳定性的前提下,膜的导电性能明显改善.  相似文献   

17.
采用热诱导溶液聚合和相转移技术,制备了新型聚偏氟乙烯-磺化聚苯乙烯(PVDF-SPS)质子交换膜。采用X射线衍射光电子能谱(XPS)、环境扫描电镜(ESEM)和红外光谱(FT-IR)对PVDF-SPS质子交换膜进行了表征,研究了质子膜的吸水率、质子传导率和甲醇渗透系数。结果表明,PVDF-SPS质子膜具有优良的亲水性能,较高的质子传导率和较低的甲醇渗透系数。PVDF-SPS质子交换膜在25℃的质子传导率和甲醇渗透系数分别为2.93×10-2S/cm和8.61×10-8cm2/s,其质子传导率与甲醇渗透系数比值为3.40×105S.s/cm3,超过Nafion-117膜的20倍。  相似文献   

18.
本发明提供了一种磺化聚苯并咪唑及其制备方法。以磺化萘二甲酸或其衍生物作为磺化单体,与二元酸或其衍生物以及3,4-二氨基苯甲酸、芳香族四元胺或其盐酸盐在多聚磷酸中进行溶液缩聚反应,可以制得磺化度可控、分子量高、热稳定性好的磺化聚苯并咪唑。这类磺化聚苯并咪唑可作为电渗析膜、超滤膜、离子交换膜或质子交换膜等膜材料,有着广阔的应用前景。  相似文献   

19.
以磺化度为75%的磺化聚醚醚酮(SPEEK)为原料,加入聚醚酰亚胺(PEI)和离子液体(ILs)制备SPEEK/PEI@ILs酸碱复合膜用于质子交换膜电解水制氢(PEMWE)中.研究复合膜的吸水率、溶胀度、质子电导率、热稳定性和相应的PEMWE性能.结果表明,SPEEK/PEI@ILs复合膜与商业Nafion117膜相比,具有相近的质子电导率和溶胀度,说明PEI的加入,增强了复合膜的尺寸稳定性.将SPEEK/PEI@ILs复合膜制备成膜电极并测试PEMWE性能,1 A/cm2电流密度下槽电压为2.75 V,在0.5 A/cm2@1.96(±0.03)V条件下能稳定运行10 h.  相似文献   

20.
曾泓钜  余海溶  程昌敬  梁婷 《功能材料》2022,53(5):5218-5225
利用含苯甲酸(6OBA)和苯乙烯基吡啶(6SzMA)基团的单体分子间氢键作用诱导形成超分子液晶,与交联剂(C6H)混合后通过原位光聚合,在平行取向条件下制备功能液晶聚合物膜,获得有序贯通的传导通道,并应用于无水质子传导,进一步通过H3PO4掺杂实现质子传导性能强化。运用FT-IR、POM、TGA、DSC、2D-SAXS、高分辨TEM和EIS对其氢键、液晶特性、微观结构和无水质子传导性能进行表征。结果表明,6OBA与6SzMA分子间形成氢键诱导产生近晶相,平行取向条件下聚合后,近晶相层结构固化获得纳米尺度规整排布的有序孔道,在无水条件下170℃时其质子传导率为7.1×10-9 S/cm。H3PO4掺杂后以分子簇的形式存在,充足的质子源和增强的氢键网络使得传导性能显著提升超4个数量级,170℃时达到3.2×10-4 S/cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号