首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
文本分类将自然语言文本按内容归入一个或多个预定义类别中,在许多信息组织和管理中都是一项重要的内容。不同算法的分类;佳确性各不相同。在文本分类领域,SVM分类器是一种常用且效果较好的分类器,具有较严密的理论基础。对SVM分类器进行了分析,提出了利用增量模式实现多类文本分类的算法。实验表明:增量方法大大减少新类增加时分类器更新所需要的学习步骤和时间,是一种较好的分类算法。  相似文献   

2.
在利用WiFi信号实现人群计数中,基于信道状态信息幅度(Channel State Information,CSI)存在分类模型滤波不彻底和准确度差的问题,本文提出了一种基于多接收天线之间相位差扩展矩阵信息的支持向量机(Sup-port Vector Machine,SVM)增量学习算法.首先对CSI原始相位数据执行三...  相似文献   

3.
本文针对支持向量机难以快速有效地进行增量式学习的问题,提出了一种基于内壳向量的支持向量机增量式学习算法.算法通过线性规划运算求得最可能包含支持向量的壳向量和内壳向量集合,在保证分类精度的前提下最大程度地缩小训练集规模,进而在新的训练集中快速训练支持向量机.将该算法应用于公开数据及低空飞行声目标分类识别,结果表明,新算法...  相似文献   

4.
通过对训练样本集的几何特征和机器学习迭代过程中支持向量的变化情况分析,文章提出一种改进的基于KKT条件和壳向量的SVM增量学习算法。算法使用包含原支持向量集的小规模扩展集—壳向量,将其作为新一轮迭代的初始训练样本集。同时,基于样本是否违背KKT条件的错误驱动策略,对新增的大量样本进行筛选,以此得到更加精简有效的新增样本集。实验结果表明,与传统的增量学习算法相比,改进的算法在模型训练的收敛速度和对未知样本集的分类准确度方面都有明显的提高。  相似文献   

5.
王一  杨俊安  刘辉 《信号处理》2010,26(10):1495-1499
在当前的机器学习领域,如何利用支持向量机(SVM)对多类目标进行分类,同时提高分类器的分类效率已经成为研究的热点之一,有效地解决此问题对于提高目标的识别概率具有较大意义。本文针对SVM多分类问题提出了一种基于遗传算法的SVM最优决策树生成算法。算法以随机生成的决策树构建的SVM分类器对同一测试样本的分类正确率作为遗传算法的适应度函数,通过遗传算法寻找到最优决策树,再以最优决策树构建SVM分类器,最终实现SVM的多分类。将该算法应用于低空飞行声目标识别问题,实验结果表明,新方法比传统的1-a-1、1-a-r、SVM-DL和GADT-SVM方法有更高的分类精度和更短的分类时间。   相似文献   

6.
7.
一种基于KKT条件和壳向量的SVM增量学习算法   总被引:3,自引:0,他引:3  
针对传统支持向量机(SVM)增量算法,在学习过程中因基于局部最优解而可能舍弃含隐性信息的非支持向量样本,以及对于新增样本需全部进行训练的缺点,文中提出一种基于KKT条件和壳向量的SVM增量学习算法。该方法利用壳向量的特性保留了训练样本集中可能含隐性信息的非支持向量,并只将违反KKT条件的增量样本加入新的训练集,从而提高运算效率。通过对公共数据集Abalone和 Balance Scale的实验表明,新算法在属性列数较多的数据集上分类效果更明显。  相似文献   

8.
常规基于内容图像检索的方法是提取图像的颜色、纹理等物理特征,运用相似性度量准则从图像库中查询相似的图像。为了提高图像检索的正确率,这里提出改进的方法。具体方法是:提取图像的物理特征,并将特征作为支持向量机(SVM)的输入向量,对图像进行分类,然后利用分类结果,对检索图像进行相似性匹配,从同类图像中找出相似的图像。实验结果显示,该方法的检索结果优于常规方法。  相似文献   

9.
一种改进的支持向量机多类分类方法   总被引:1,自引:0,他引:1  
提出一种新的基于二叉树结构的支持向量机(SVM)多类分类方法.该方法解决了现有主要算法中存在的不可分区域问题,具有简单、直观、重复训练样本少的优点.为了提高分类模型的推广能力,必须使样本分布好的类处于二又树的上层节点,才能获得更大的划分空间.因此,该算法采用类间散布度量与类内散布度量的比值作为二叉树的生成算法.采用UCI标准数据集实验,实验结果表明该算法具有一定的优越性.  相似文献   

10.
罗会兰  杜连平 《电视技术》2012,36(23):39-42
针对单分类器没有充分考虑数据集的特征而不能很好地完成分类识别,提出了一种基于集成学习技术的SVM集成的图像分类方法。该方法是在基于较为流行的词袋(Bag-of-Words,BOW)模型的图像分类方法的基础上,利用训练生成的不同SVM分类器分类测试图像,并将分类结果采用集成学习算法进行集成。分别采用传统的BOW模型的图像分类方法和本文提出的方法进行分类实验,实验结果表明采用SVM集成的图像分类方法明显提高了分类精度,具有一定的稳健性。  相似文献   

11.
适用于不平衡样本数据处理的支持向量机方法   总被引:6,自引:0,他引:6  
吴洪兴彭宇  彭喜元 《电子学报》2006,34(B12):2395-2398
支持向量机算法在处理不平衡样本数据时,其分类器预测具有倾向性.样本数量多的类别,其分类误差小,而样本数量少的类别,其分类误差大.本文针对这种倾向性问题,在分析其产生原因的基础上,提出了基于遗传交叉运算的改进方法.对于小类别训练样本,利用交叉运算产生新的样本,从而补偿了因训练数据类别大小差异而造成的影响.基于UCI标准数据集的仿真实验结果表明,改进方法比标准支持向量机方法具有更好的分类准确率.  相似文献   

12.
肖怀铁  郭雷  付强 《信号处理》2005,21(Z1):366-369
本文主要研究基于支持矢量机(SVM)的多目标识别方法.首先介绍了基于SVM的OAA和OAO多目标识别算法,针对OAA和OAO算法存在的误判问题,基于SVM决策函数建立了样本模糊隶属度函数,对OAA和OAO算法进行了改进,提出了一种新的模糊支持矢量机多目标识别方法.仿真实验结果表明,该方法能够有效提高识别性能.  相似文献   

13.
由于多载波传输数据和基于快速傅里叶变换(Fast Fourier Transform,FFT)的矩形窗截取,MC—CDMA(Muhi—Carrier CDMA)系统对频率偏差十分敏感,同时上行链路信号的异步性和信道的非线性,令MC—CDMA从单载波扩频系统继承来的线性多用户检测手段和分集合并技术变得不再有效,信道估计困难而不准确。为了在这种条件下提高信号检测的性能,提出了基于支撑向量机增量学习算法(Incremental Support Vector Machine,ISVM)的MC—CDMA上行链路多用户检测器。该检测器在标准支撑向量机(Support Vector Machine,SVM)的基础上舍弃历史样本,减少不必要的训练,同时合理地处理了新增样本和原支撑向量机分界面的关系,保留了强大的非线性分类力。通过仿真实验,与常用的检测技术以及最佳检测曲线比较,表明该检测器能很好地逼近最佳检测器。  相似文献   

14.
提出了一种新的在高斯白噪声条件下基于支持向量机的分层调制识别方法.其中选取信号的4阶、6阶累积量作为分类特征向量,并利用支持向量机作为分类器对其进行分层调制分类.该方法相比其他非分级调制识别方法具有较低的计算复杂度和较快的分类器训练速度.理论分析和仿真结果均证明了算法的正确性和有效性.  相似文献   

15.
支持向量机的若干新进展   总被引:50,自引:0,他引:50  
王国胜  钟义信 《电子学报》2001,29(10):1397-1400
支持向量机是九十年代中期发展起来的机器学习技术,与传统的人工神经网络不同,前者基于结构风险最小化原理,后者基于经验风险最小化原理.实验表明,支持向量机不仅结构简单,而且技术性能尤其是泛化能力明显提高.本文是一篇综述,介绍支持向量机研究的一些新进展,希望引起大家的重视.  相似文献   

16.
一种基于SVM的多目标模糊识别方法   总被引:2,自引:0,他引:2  
支持矢量机是近年来在统计学习理论的基础上发展起来的一种新的模式识剐方法,在解决小样本、非线性及高维模式识剐问题中表现出许多特有的优势。本文重点分析了支持矢量机多分类问题中存在的错分、拒分现象,提出了一种基于支持矢量机特征空问的模糊隶属度函数。多目标识剐的仿真结果表明,采用这种模糊隶属度函数,能够减少目标的错分和拒分数量,提高识剐率。  相似文献   

17.
针对小样本条件下雷达目标分类精度低的问题,提出了一种基于支持向量机(Support Vector Machine,SVM)的雷达目标分类方法。通过雷达目标特征的提取、选择和分类器的设计,实现了目标的多分类,且提高了目标分类精度。实验结果表明,基于二维特征的分类器可实现多目标的高精度分类,且平均分类精度均优于85%。  相似文献   

18.
针对传统的二分类支持向量机在数据种类繁多并含有很多不带标签的样本时的固有缺陷,提出了一种主动学习与非平衡二叉树结合的多类分类支持向量机.该方法首先通过类距离构造一个非平衡二叉树结构,从易到难依次构造节点,将最容易分出的类放在根节点,然后利用主动学习策略,自动为选择的样本添加标签,并添加到训练样本集中.实验结果表明本文提出算法性能优于常规主动学习支持向量机,有效提高了分类精度,且大大缩短了算法运行时间.  相似文献   

19.
该文提出了一种类加权的双v支持向量机,称为WD v-SVM。给出了求解WD v-SVM的KKT条件。理论分析表明,WD v-SVM中的参数v+和v-具有与v-SVM类似的物理含义,分别对应于加权正类和负类中边界向量比例的上界和支持向量比例的下界,从而有利于分类识别中的参数取值。此外,通过调整类加权可提高WD v-SVM对小样本类的分类性能。实验结果表明WD v-SVM既保持了v-SVM的优势,即WD v-SVM的参数具有明确的物理含义,又解决了v-SVM由于样本类不平衡导致的分类错误偏差问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号