首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
通过应力诱导平板开裂试验,研究不同掺量剑麻纤维、耐碱玻璃纤维及两者1∶1混杂纤维增强自密实轻骨料混凝土早期抗裂性能.结果表明:3种掺入方式均能有效抑制自密实轻骨料混凝土裂缝的产生与扩展,随着纤维掺量的增加,早期抗裂性能逐渐提升,当掺量达到2.0 kg/m3时,可视裂缝基本消失.混杂纤维协同工作产生的阻裂效果优于单掺情况,综合考虑自密实轻骨料混凝土的力学、工作性能和早期抗裂性能,得出混杂纤维的适宜掺量为1.0 kg/m3.  相似文献   

2.
为探究改性聚酯纤维对混凝土早期开裂和收缩的影响,以纤维掺量为变量,采用平面薄板和非接触法收缩测定仪对改性聚酯纤维混凝土的早期开裂和收缩进行测试分析.结果表明,改性聚酯纤维对混凝土的早期收缩和开裂均有明显的改善作用.随着纤维掺量的增加,裂缝面积和早期收缩呈现先减小后增大的趋势.当纤维掺量为1. 2 kg/m~3时,纤维对混凝土早期开裂和收缩性能的改善均达到最好的效果,与未掺纤维的对比试样相比,裂缝面积可降低86. 4%,早期收缩率可降低68. 7%.试验结果表明,纤维的掺入对混凝土的早期抗折强度影响不大,相较于对照试样而言,纤维混凝土的7 d抗折强度增长率均在6%以下.通过裂缝面积、早期收缩和早期抗折强度的对比分析,发现改性聚酯纤维对混凝土抗裂性能的增强主要是由于纤维的掺入减小了混凝土的早期收缩.  相似文献   

3.
选取强度等级CF40和CF50混凝土,在混杂纤维混凝土配合比三元叠加法试验基础上确定配合比:在钢纤维体积分数固定为1%时,聚丙烯纤维掺量在0.3~1.5 kg/m3内按级差0.3 kg/m3取5个水平;在聚丙烯纤维掺量为0.9 kg/m3时,钢纤维体积分数在0.5%~2.0%内按级差0.5%取4个水平,研究纤维的不同掺量对混凝土早龄期抗裂性能的影响以及试件裂缝形态的变化.结果表明,钢-聚丙烯纤维混杂具有耦合提高混凝土早龄期抗裂性能的作用,早龄期抗裂性能随纤维掺量的增加而提高;钢纤维体积分数和聚丙烯纤维掺量存在合理有效值.纤维混杂可以协同阻裂和限裂,使混凝土裂缝由宽、长形态调整为细、短形态.  相似文献   

4.
为分析不同掺量硅粉和聚丙烯纤维对再生混凝土梁抗裂性能的影响,对5根再生混凝土梁的开裂荷载、极限荷载、应力分布和荷载-挠度曲线进行了ANSYS有限元分析。结果表明:硅粉和聚丙烯纤维的掺入,提高了再生混凝土的强度和整体刚度,使得梁抵抗拉应力的能力提高,抗裂性能增强、延性提高,开裂荷载和极限荷载均增大。当硅粉掺量为8%,聚丙烯纤维掺量为0.9 kg/m3时,试件的开裂荷载和极限荷载达到最大值,分别为23.66 kN和128.5kN,较SF0P0均提高20%以上。  相似文献   

5.
通过对剑麻纤维自密实轻骨料混凝土梁进行抗弯性能的试验研究,验证其平截面假定,得到试验梁的荷载-跨中挠度曲线、钢筋荷载-应变曲线和破坏形态,并对试验梁的开裂荷载和抗弯承载力进行理论分析.试验结果表明:剑麻纤维自密实轻骨料混凝土梁和自密实轻骨料混凝土梁均满足平截面假定;掺加剑麻纤维或增加配筋率,能有效改善试验梁的裂缝形态并提高抗弯刚度,当剑麻纤维掺量为2 kg/m3时裂缝条数最多,但间距和宽度最小,韧性最好;剑麻纤维对自密实轻骨料混凝土梁的开裂荷载有一定影响,当剑麻纤维掺量为3 kg/m3时,开裂荷载提高最大为40%;开裂荷载和极限荷载建议采用本文修正后的推导公式计算,可与试验值吻合较好.  相似文献   

6.
《焦作工学院学报》2016,(5):713-718
采用天然珊瑚碎屑作为粗骨料,研究在水灰比为0.4的条件下不同掺量的碳纤维、聚丙烯纤维和剑麻纤维珊瑚混凝土的基本力学指标。试验表明,随着纤维掺量的增加,珊瑚混凝土的立方体抗压强度、劈裂抗拉强度、抗折强度、弹性模量均呈现先增加后减小的趋势,总体来看,最优碳纤维掺量为2 kg/m3,最优聚丙烯纤维掺量也是2 kg/m3,最优剑麻纤维掺量为4.5kg/m3。当掺入纤维过量时,珊瑚混凝土分散性降低,从而增加浆体薄弱界面,无法发挥其增强、增韧的效应反而使其强度有所下降。纤维材料能明显改善珊瑚混凝土的脆性,增加韧性,使其抗折性能显著提高,改变珊瑚混凝土的破坏形态,试件破坏时依然能保持良好的整体性。  相似文献   

7.
常用的页岩陶粒内部有多孔结构,易导致其机械强度较天然石子低,在轻骨料混凝土受力时更容易破坏,使轻骨料混凝土的基本力学性能降低。为增强轻骨料混凝土的基本力学性能,通过试验研究轻骨料混凝土的基本力学性能受聚丙烯纤维的掺量及其长度的影响规律。试验结果显示:聚丙烯纤维可有效改善轻骨料混凝土的抗压、抗拉性能。长度3 mm聚丙烯纤维,当掺量为0.3%~1.2%时,轻骨料混凝土的立方体抗压强度和劈裂抗拉性能分别上升4.4%~12.8%和4.5%~15.5%;对于纤维长度为6 mm、掺量为0.3%~0.9%时,立方体抗压强度和劈裂抗拉性能提升幅度则分别为11.5%~18.3%、14.3%~23.4%。6 mm聚丙烯纤维较3 mm能更有效提升轻骨料混凝土的抗压和抗拉性能,相对增幅分别达1.6%~10.4%和9.5%~10.6%。聚丙烯纤维的掺入整体上有利于轻骨料混凝土弹性模量的提升,但是效果和规律均不明显。  相似文献   

8.
目的研究了聚丙烯纤维对混凝土塑性开裂特征的影响,为改善混凝土塑性开裂提供理论依据.方法采用平板约束法,研究不同掺量、不同长度的聚丙烯纤维对混凝土塑性开裂特征的影响,并应用分形理论,计算了聚丙烯纤维混凝土塑性开裂的分形维数.结果聚丙烯纤维的掺入阻碍了裂缝的产生和发展,且随着体积掺量的增加、长度的增长阻裂效果增强;裂缝分形维数的发展随着纤维掺量的增加、长度的增长而减缓,裂缝复杂化程度减缓.结论聚丙烯纤维能有效地延缓裂缝的产生和发展;应用分形理论分析评价混凝土早期塑性开裂特征是十分有效的.  相似文献   

9.
目的为增强混凝土早期抗塑性开裂性能及耐久性,研究了有机纤维种类、长度及掺量对混凝土工作性能、力学性能及抗碳化性能的影响.方法采用坍落度试验、抗压与抗折强度试验、混凝土碳化试验及平板约束法测试进行研究.结果聚丙烯腈(PAN)纤维对混凝土工作性能影响最大,坍落度降幅达86%;掺入19mm聚丙烯(PP)单丝纤维,坍落度下降25%;加入0.15%PP纤维,坍落度降幅达28.7%,含气量增加25.9%;掺入聚乙烯醇(PVA)纤维后,混凝土7d、28d抗压强度降幅最大,分别达30.4%、23.5%;12mmPP单丝纤维体积掺量为0.15%时混凝土的抗裂效果明显好于0.05%掺量,而碳化深度较基准低30%.结论混凝土中掺入有机纤维后,早期抗塑性开裂性能明显增强;混凝土的抗裂效果随纤维长度和掺量增加,效果越来越明显;有机纤维的加入明显提高混凝土的抗碳化力,力学性能有所降低,但降幅不大.  相似文献   

10.
针对普通混凝土易开裂、耐久性不良等问题,通过室内试验探讨聚丙烯纤维网混凝土的低温抗裂性能.利用weibull分布,研究在常温、冰冻及冻融循环状态下纤维掺量对水泥混凝土断裂能和疲劳寿命的影响.结果表明,聚丙烯纤维网具有提高混凝土耐久性的作用,冻融后抗压强度提高13.9%;早龄期抗裂性随着聚丙烯纤维掺量的增加而提高,在掺量为0.9 kg/m3时经济性最佳.  相似文献   

11.
为了研究钢纤维和聚丙烯纤维对轻骨料混凝土性能的影响,共设计了16组轻骨料混凝土试件,其中有9组混杂纤维轻骨料混凝土,3组钢纤维轻骨料混凝土,3组聚丙烯纤维轻骨料混凝土和1组普通轻骨料混凝土试件。试验结果表明:当钢纤维体积率为1.0%,聚丙烯纤维体积率为0.05%时,混凝土的抗压强度最大为39.16 MPa,提高了17.92%;当钢纤维体积率为1.5%时,抗拉强度最大为4.77 MPa,提高了63.36%。50次冻融循环试验后混凝土的强度损失率最低的是Ssp3组,即钢纤维体积率为1.0%,聚丙烯纤维体积率为0.15%时,强度损失率最低为1.79%,降低了68.92%。  相似文献   

12.
在2种轻混凝土基体(LC25,LC30)和3种纤维体积掺量(0.5%,1.0%,1.5%)基础上,对聚丙烯粗纤维陶粒混凝土力学性能进行了试验研究.结果表明:陶粒混凝土立方体抗压强度、劈裂抗拉强度、抗折强度随着纤维掺量的增大,都表现出先增加后降低的特性,并且都在纤维掺量为1%时获得最大强度;而抗冲击性能则随纤维掺量增大不断提高.在实际应用时,聚丙烯粗纤维掺量不宜超过1.0%.  相似文献   

13.
面板堆石坝的混凝土面板层属于大面积敞开式薄壁结构,在基础及钢筋的约束下,易产生塑性裂缝和早期干缩裂缝,研究了纤维素纤维和聚丙烯纤维对面板混凝土塑性裂缝及早期干缩裂缝的作用以及对混凝土抗渗性和抗冻性的影响.研究结果表明:纤维素纤维在混凝土塑性阶段具有显著的减裂效果,减裂率达到86.2%,而聚丙烯纤维的减裂率为52.0%;纤维素纤维和聚丙烯纤维对早期干燥收缩裂缝具有抑制作用,减裂率分别为66.7%和52.2%;纤维素纤维和聚丙烯纤维提高了混凝土抗渗性和抗冻性,其中纤维素纤维混凝土的抗渗等级提高了2个等级,聚丙烯纤维混凝土提高1个等级,两种纤维混凝土的抗冻性提高了50个标号.  相似文献   

14.
大流动性高强轻集料混凝土的研究   总被引:6,自引:3,他引:6  
为设计出具有大流动性性能的高强或超高强轻集料混凝土,分别研究了水胶比、砂率、轻集料最大粒径3个关键技术参数和矿物掺合料组成设计对混凝土工作性能和抗压强度的影响规律,确定了配制LC50~LC60自密实高强轻集料混凝土的主要技术方法,制备出坍落度为240mm以上、扩展度达到680~700mm、28d抗压强度超过60MPa的大流动性高强轻集料混凝土。  相似文献   

15.
粗骨料对轻骨料混凝土塑性收缩裂缝的影响   总被引:2,自引:1,他引:2       下载免费PDF全文
轻骨料级配以及含水率影响用其配制的混凝土的塑性收缩裂缝.试验结果表明,轻骨料单粒级粒径增大,则骨料吸水率和新拌混凝土水分蒸发量均增大,而裂缝面积却随之减小;此外,高含水率轻骨料更有利于抑制混凝土早期塑性收缩开裂.  相似文献   

16.
微硅粉和聚丙烯纤维对混凝土抗裂性研究   总被引:1,自引:0,他引:1  
为使混凝土具有良好的耐久性,必须先解决混凝土的抗裂性.因此,在混凝土原材料中加入聚丙烯纤维、微硅粉、矿渣来优化混凝土的抗裂性.用试验手段和正交设计来分析不同掺量时聚丙烯纤维、微硅粉以及矿渣对混凝土抗裂性能的影响.试验结果显示:聚丙烯纤维对混凝土的性能影响尤为显著;掺入微硅粉有利于增强混凝土的抗压强度和抗抗劈裂强度;复合...  相似文献   

17.
为了解决开裂及渗水这一无缝钢筋混凝土游泳池工程中的难点问题,游泳池池体结构选用聚丙烯纤维混凝土.文章结合实例分析、介绍了聚丙烯纤维混凝土的工作原理以及原材料的构成.工程实践证明,在混凝土中掺加适量的聚丙烯纤维能有效地提高混凝土材料的抗裂、防渗性能.  相似文献   

18.
The cracking behavior of lightweight aggregate concrete(LWAC) was investigated by mechanical analysis, SEM and cracking-resistant test where a shrinkage-restrained ring with a clapboard was used. The relationship between the ceramsite type and the cracking resistance of LWAC was built up and compared with that of normal-weight coarse aggregate concrete(NWAC). A new method was proposed to evaluate the cracking resistance of concrete, where the concepts of cracking coefficient ζt(t) and the evaluation index Acr(t) were proposed, and the development of micro-cracks and damage accumulation were recognized. For the concrete with an ascending cracking coefficient curve, the larger Acr(t) is, the lower cracking resistance of concrete is. For the concrete with a descending cracking coefficient curve, the larger Acr(t) is, the stronger the cracking resistance of concrete is. The evaluation results show that in the case of that all the three types of coarse aggregates in concrete are pre-soaked for 24 h, NWAC has the lowest cracking resistance, followed by the LWAC with lower water absorption capacity ceramsite and the LWAC with higher water absorption capacity ceramsite has the strongest cracking resistance. The proposed method has obvious advantages over the cracking age method, because it can evaluate the cracking behavior of concrete even if the concrete has not an observable crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号