首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructures and mechanical properties of a series of vacuum melted Fe/(2 to 4) Mo/(0.2 to 0.4) C steels with and without cobalt have been investigated in the as-quenched fully martensitic condition and after quenching and tempering for 1 h at 673 K (400°C) and 873 K (600°C); austenitizing was done at 1473 K (1200°C) in argon. Very good strength and toughness properties were obtained with the Fe/2 Mo/0.4 C alloy in the as-quenched martensitic condition and this is attributed mainly to the absence of internal twinning. The slightly inferior toughness properties compared to Fe/Cr/C steels is attributed to the absence of interlath retained austenite. The two 0.4 pct carbon steels having low Mo contents had approximately one-half the amount of transformation twinning associated with the two 0.4 pct carbon steels having high Mo contents. The plane strain fracture toughness of the steels with less twinning was markedly superior to the toughness of those steels with similar alloy chemistry which had more heavily twinned microstructures. Experiments showed that additions of Co to a given Fe/Mo/C steel raised Ms but did not decrease twinning nor improve toughness. Molybdenum carbide particles were found in all specimens tempered at 673 K (400°C). The Fe/Mo/C system exhibits secondary hardening after tempering at 873 K (600°C). The precipitate is probably Mo2C. This secondary hardening is associated with a reduction in toughness. Additions of Co to Fe/Mo/C steels inhibited or eliminated the secondary hardening effect normally observed. Toughness, however, did not improve and in fact decreased with Co additions.  相似文献   

2.
The toughness of SAE 4340 steel with low (0.003 wt pct) and high (0.03 wt pct) phosphorus has been evaluated by Charpy V notch (CVN) impact and compact tension plane strain fracture toughness (K 1c) tests of specimens quenched and tempered up to 673 K (400°C). Both the high and low P steel showed the characteristic tempered martensite embrittlement (TME) plateau or trough in room temperature CVN impact toughness after tempering at temperatures between 473 K (200°C) and 673 K (400°C). The CVN energy absorbed by low P specimens after tempering at any temperature was always about 10 J higher than that of the high P specimens given the same heat treatment. Interlath carbide initiated cleavage across the martensite laths was identified as the mechanism of TME in the low P 4340 steel, while intergranular fracture, apparently due to a combination of P segregation and carbide formation at prior austenite grain boundaries, was associated with TME in the high P steel.K IC values reflected TME in the high P steels but did not show TME in the low P steel, a result explained by the formation of a narrow zone of ductile fracture adjacent to the fatigue precrack during fracture toughness testing. The ductile fracture zone was attributed to the low rate of work hardening characteristic of martensitic steels tempered above 473 K (200°C).  相似文献   

3.
Strength and toughness of Fe-10ni alloys containing C,Cr, Mo,and Co   总被引:8,自引:0,他引:8  
The effects of C (0.10 to 0.20 pct), Cr (0 to 3 pct), Mo (0 to 2 pct), and Co (0 to 8 pct) on the yield strength, toughness (Charpy shelf energy), and tempering behavior of martensitic lONiCr-Mo-Co steels have been investigated. Variations in the carbon content between 0.10 and 0.20 pct result in yield strengths between 160 and 210 ksi (1.1 and 1.45 GN/m2) when these steels are tempered at 900° to 1000°F (480° to 540°C) for times of 1 to 100 h. These steels exhibit a secondary-hardening peak at 900° to 1000° F (480° to 540°C) where coarse Fe3C carbides are gradually replaced by a fine, dislocation-nucleated dispersion of (Mo, Cr)2C carbides. Maximum toughness at a given yield strength in these steels is only obtained when they are tempered for sufficiently long times so that the coarse Fe3C carbides are completely dissolved. Molybdenum is primarily responsible for the secondary-hardening peak observed in these steels. However, chromium additions do result in lower secondaryhardening temperatures and promote coarsening of the secondary-hardening carbide. Best combinations of strength and toughness are obtained with steels containing 2 pct Cr and 1 pct Mo. Cobalt increases the yield strength of these steels over the entire tempering range and results in a higher secondary-hardening peak. This effect of cobalt is attributed to 1) a retardation in the rate of recovery of the dislocation substructure of the martensite, 2) the formation of a finer dispersion of secondary-hardening carbides, and 3) solid-solution strengthening. The finer dispersion of secondary-hardening carbides in steels containing cobalt is favored by the finer dislocation substructure in these steels since the (Mo, Cr)2C carbide is dislocation-nucleated. This fine dispersion of (Mo, Cr)2C carbide combined with the high nickel content accounts for the excellent combination of strength and toughness exhibited by these steels.  相似文献   

4.
The fatigue crack growth rates,da/dN, and the fracture toughness, KIc have been measured in two high-carbon martensitic stainless steels, 440C and BG42. Variations in the retained austenite contents were achieved by using combinations of austenitizing temperatures, refrigeration cycles, and tempering temperatures. In nonrefrigerated 440C tempered at 150 °C, about 10 vol pct retained austenite was transformed to martensite at the fracture surfaces duringK Ic testing, and this strain-induced transformation contributed significantly to the fracture toughness. The strain-induced transformation was progressively less as the tempering temperature was raised to 450 °C, and at the secondary hardening peak, 500 °C, strain-induced transformation was not observed. In nonrefrigerated 440C austenitized at 1065 °C,K Ic had a peak value of 30 MPa m1/2 on tempering at 150 °C and a minimum of 18 MPa m1/2 on tempering at 500 °C. Refrigerated 440C retained about 5 pct austenite, and did not exhibit strain-induced transformation at the fracture surfaces for any tempering temperature. TheK Ic values for corresponding tempering temperatures up to the secondary peak in refrigerated steels were consistently lower than in nonrefrigerated steels. All of the BG42 specimens were refrigerated and double or quadruple tempered in the secondary hardening region; theK Ic values were 16 to 18 MPa m1/2 at the secondary peak. Tempered martensite embrittlement (TME) was observed in both refrigerated and nonrefrigerated 440C, and it was shown that austenite transformation does not play a role in the TME mechanism in this steel. Fatigue crack propagation rates in 440C in the power law regime were the same for refrigerated and nonrefrigerated steels and were relatively insensitive to tempering temperatures up to 500 °C. Above the secondary peak, however, the fatigue crack growth rates exhibited consistently lower values, and this was a consequence of the tempering of the martensite and the lower hardness. Nonrefrigerated steels showed slightly higher threshold values, ΔKth, and this was ascribed to the development of compressive residual stresses and increased surface roughening in steels which exhibit a strain-induced martensitic transformation.  相似文献   

5.
The compressive strength at -196°C of martensites in Fe-0.26 pct C-24 pct Ni, Fe-0.4 pct C-21 pct Ni, and Fe-0.4 pct C-18 pct Ni-3 pct Mo alloys, all with subzero M temperatures, has been determined in the virgin condition and after one hour at temperatures from -80 to +400 °C. The effects of ausforming (20 pct reduction in area of the austenite by swaging at room temperature prior to the martensitic transformation) were also investigated. For the unausformed martensites, aging at temperatures up to 0 °C results in relatively small increases in strength. Above 0 °C, the age hardening increment increases rapidly, reaching a maximum at 100 °C. Above 100 °C, the strength decreases continuously with increasing tempering temperature except for the molybdenum-containing alloy, which exhibits secondary hardening on tempering at 400 °C. For the ausformed martensites, the response to aging at subzero temperatures is greater than for unausformed material. Strength again passes through a maximum on aging at 100 °C. However, on tempering just above 100 °C, the ausformed materials show a slower rate of softening than the unausformed martensites. The strengthening produced by the ausforming treatment is largest for the Fe-0.4 pct C-18 pct Ni-3 pct Mo alloy, but there is no evidence of carbide precipitation in the deformed austenite to a°Count for this effect of molybdenum.  相似文献   

6.
The compressive strength at —196°C of martensites in Fe-0.26 pct C-24 pct Ni, Fe-0.4 pct C-21 pct Ni, and Fe-0.4 pct C-18 pct Ni-3 pct Mo alloys, all with subzero Ms temperatures, has been determined in the virgin condition and after one hour at temperatures from —80 to +400 °C. The effects of ausforming (20 pct reduction in area of the austenite by swaging at room temperature prior to the martensitic transformation) were also investigated. For the unausformed martensites, aging at temperatures up to 0 °C results in relatively small increases in strength. Above 0 °C, the age hardening increment increases rapidly, reaching a maximum at 100 °C. Above 100 °C, the strength decreases continuously with increasing tempering temperature except for the molybdenum-containing alloy, which exhibits secondary hardening on tempering at 400 °C. For the ausformed martensites, the response to aging at subzero temperatures is greater than for unausformed material. Strength again passes through a maximum on aging at 100 °C. However, on tempering just above 100 °C, the ausformed materials show a slower rate of softening than the unausformed martensites. The strengthening produced by the ausforming treatment is largest for the Fe-0.4 pct C-18 pct Ni-3 pct Mo alloy, but there is no evidence of carbide precipitation in the deformed austenite to account for this effect of molybdenum. This paper is based on a presentation made at the “Peter G. Winchell Symposium on Tempering of Steel” held at the Louisville Meeting of The Metallurgical Society of AIME, October 12-13, 1981, under the sponsorship of the TMS-AIME Ferrous Metallurgy and Heat Treatment Committees.  相似文献   

7.
The formation of secondary carbides during tempering of H11 hot work steels at 898 K (625 °C) was studied by transmission electron microscopy (TEM) and related to the previously established effects of Si content on mechanical properties. Lower Si contents (0.05 and 0.3 pct Si) and higher Si contents (1.0 and 2.0 pct Si) were observed to yield different carbide phases and different particle distributions. Cementite particles stabilized by Cr, Mo, and V in the lower Si steels were found to be responsible for similar precipitation hardening effects in comparison to the M2C alloy carbides in the higher Si steels. The much higher toughness of the lower Si steels was suggested to be due to a finer and more homogeneous distribution of Cr-rich M7C3 carbides in the interlath and interpackage regions of the quenched and tempered martensite microstructure. The present effects of Si content on the formation of alloy carbides in H11 hot work steels were found to be the result of the retarding effect of Si on the initial formation of cementite, well known from the early tempering stages in low alloy steels.  相似文献   

8.
A study of the structure and mechanical properties of Fe-Cr-Mo-C martensitic steels with and without boron addition has been carried out. Nonconventional heat treatments have subsequently been designed to improve the mechanical properties of these steels. Boron has been known to be a very potent element in increasing the hardenability of steel, but its effect on structure and mechanical properties of quenched and tempered martensitic steels has not been clear. The present results show that the as-quenched structures of both steels consist mainly of dislocated martensite. In the boron-free steel, there are more lath boundary retained austenite films. The boron-treated steel shows higher strengths at all tempering temperatures but with lower Charpy V-notch impact energies. Both steels show tempered martensite embrittlement when tempered at 350 °C for 1 h. The properties above 500 °C tempering are significantly different in the two steels. While the boron-free steel shows a continuous increase in toughness when tempered above 500 °C, the boron-treated steel suffers a second drop in toughness at 600 °C tempering. Transmission electron microscopy studies show that in the 600 °C tempered boron-treated steel large, more or less continuous cementite films are present at the lath boundaries, which are probably responsible for the embrittlement. The differences in mechanical properties at tempering temperatures above 500 °C are rationalized in terms of the effect of boron-vacancy interactions on the recovery and recrystallization behavior of these steels. Although boron seems to impair room temperature impact toughness at low strength levels, it does not affect this property at high strength levels. By simple nonconventinal heat treatments of the present alloys, martensitic steels may be produced with quite good strength-toughness properties which are much superior to those of existing commercial ultra-high strength steels. It is also shown that very good combinations of strength and toughness can be obtained with as-quenched martensitic steels.  相似文献   

9.
The influence of microstructural variations on the fracture toughness of two tool steels with compositions 6 pct W-5 pct Mo-4 pct Cr-2 pct V-0.8 pct C (AISI M2 high-speed steel) and 2 pct W-2.75 pct Mo-4.5 pct Cr-1 pct V-0.5 pct C (VASCO-MA) was investigated. In the as-hardened condition, the M2 steel has a higher fracture toughness than the MA steel, although the latter steel is softer. In the tempered condition, MA is softer and has a higher fracture toughness than M2. When the hardening temperature is below 1095 °C (2000 °F), tempering of both steels causes embrittlement,i.e., a reduction of fracture toughness as well as hardness. The fracture toughness of both steels was enhanced by increasing the grain size. The steel samples with intercept grain size of 5 (average grain diameter of 30 microns) or coarser exhibit 2 to 3 MPa√m (2 to 3 ksi√in.) higher fracture toughness than samples with intercept grain size of 10 (average grain diameter of 15 microns) or finer. Tempering temperature has no effect on the fracture toughness of M2 and MA steels as long as the final tempered hardness of the steels is constant. Retained austenite has no influence on the fracture toughness of as-hardened MA steel, but a high content of retained austenite appears to raise the fracture toughness of as-hardened M2 steel. There is a temperature of austenitization for each tool steel at which the retained austenite content in the as-quenched samples is a maximum. The above described results were explained through changes in the microstructure and the fracture modes. CHONGMIN KIM, formerly with Climax Molybdenum Company of Michigan, Ann Arbor, MI.  相似文献   

10.
The effects of alloying additions and austenitizing treatments on secondary hardening and fracture behavior of martensitic steels containing both Mo and W were investigated. The secondary hardening response and properties of these steels are dependent on the composition and distribution of the carbides formed during aging (tempering) of the martensite, as modified by alloying additions and austenitizing treatments. The precipitates responsible for secondary hardening are M2C carbides formed during the dissolution of the cementite (M3C). The Mo-W steel showed moderately strong secondary hardening and delayed overaging due to the combined effects of Mo and W. The addition of Cr removed secondary hardening by the stabilization of cementite, which inhibited the formation of M2C carbides. The elements Co and Ni, particularly in combination, strongly increased secondary hardening. Additions of Ni promoted the dissolution of cementite and provided carbon for the formation of M2C carbide, while Co increased the nucleation rate of M2C carbide. Fracture behavior is interpreted in terms of the presence of impurities and coarse cementite at the grain boundaries and the variation in matrix strength associated with the formation of M2C carbides. For the Mo-W-Cr-Co-Ni steel, the double-austenitizing at the relatively low temperatures of 899 to 816 °C accelerated the aging kinetics because the ratio of Cr/(Mo + W) increased in the matrix due to the presence of undissolved carbides containing considerably larger concentrations of (Mo + W). The undissolved carbides reduced the impact toughness for aging temperatures up to 510 °C, prior to the large decrease in hardness that occurred on aging at higher temperatures.  相似文献   

11.
Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4?pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873?K (600?°C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243?K (?C30?°C), which could be further reduced by purification.  相似文献   

12.
The effect of W on dislocation recovery and precipitation behavior was investigated for martensitic 9Cr-(0,l,2,4)W-0.1C (wt pct) steels after quenching, tempering, and subsequent prolonged aging. The steels were low induced-radioactivation martensitic steels for fusion reactor structures, intended as a possible replacement for conventional (7 to 12)Cr-Mo steels. During tempering after quenching, homogeneous precipitation of fine W2C occurred in martensite, causing secondary hardening between 673 and 823 K. The softening above the secondary hardening temperature shifted to higher temperatures with increasing W concentration, which was correlated with the decrease in self-diffusion rates with increasing W concentration. Carbides M23C6 and M7C3 were precipitated in the 9Cr steel without W after high-temperature tempering at 1023 K. With increasing W concentration, M7C3 was replaced by M23C6, and M6C formed in addition to M23C6. During subsequent aging at temperatures between 823 and 973 K after tempering, the recovery of dislocations, the agglomeration of carbides, and the growth of martensite lath subgrains occurred. Intermetallic Fe2W Laves also precipitated in the δ-ferrite grains of the 9Cr-4W steel. The effect of W on dislocation recovery and precipitation behavior is discussed in detail.  相似文献   

13.
Thermo-mechanical treatments (TMT) at different rolling deformation temperatures were utilized to process a martensitic heat-resistant stainless steel 403Nb containing 12 wt pct Cr and small additions of Nb and V. Microstructures and mechanical properties at room and elevated temperatures were characterized by scanning electron microscopy, transmission electron microscopy, and hardness, tensile, and creep tests. The results showed that high-temperature mechanical behavior after TMT can be greatly improved and microstructures with refined martensitic lath and finely dispersed nanosized MX carbides could be produced. The particle sizes of M23C6 and MX carbides in 403Nb steel after conventional normalizing and tempering (NT) treatments are about 50 to 160 and 10 to 20 nm, respectively, while those after TMT at 1123 K (850 °C) and subsequent tempering at 923 K (650 °C) for 2 hours reach about 25 to 85 and 5 to 10 nm, respectively. Under the condition of 260 MPa and 873 K (600 °C), the tensile creep rupture life of 403Nb steel after TMT at 1123 K (850 °C) is 455 hours, more than 3 times that after conventional NT processes. The mechanisms for improving mechanical properties at elevated temperature were analyzed in association with the existence of finely dispersed nanosized MX particles within martensitic lath. It is the nanosized MX particles having the higher stability at elevated temperature that assist both dislocation hardening and sub-grain hardening for longer duration by pinning the movement of dislocations and sub-grain boundary migration.  相似文献   

14.
Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at <0.3T M (T M is melting temperature) and up to 10 dpa (displacement per atom). Ferritic/martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.  相似文献   

15.
The fractures of three model alloys, imitating by their chemical composition the matrixes of the quenched high-speed steels of various Mo: W relations were analyzed. According to the measurements of the stress intensity factor KIc and the differences in the precipitation processes of carbides it was found out that the higher fracture toughness of the matrix of the molybdenum high-speed steels than on the tungsten ones is the results of the differences in the kinetics of precipitation from the martensite matrix of these steels during tempering. After tempering at 250 and 650°C the percentage of the intergranular fracture increases with the increase of the relation of Mo to W in the model alloys of the high-speed steel matrix. This is probably the result of higher precipitation rate of the M3C carbide (at 250°C) and the MC and M6C carbides (at 650°C) in the privileged regions along the grain boundaries. The change of the character of the model alloy fractures after tempering at 450°C from the completely transgranular one in the tungsten alloy to the nearly completely intergranular one in the molybdenum alloy indicates that the coherent precipitation processes responsible for the secondary hardness effect in the tungsten matrix begin at a lower temperature than in the molybdenum matrix. After tempering for the maximum secondary hardness the matrix fractures of the high-speed steels reveal a transgranular character regardless the relation of Mo to W. The higher fracture toughness of the Mo matrix can be the result of the start of the coherent precipitation processes at a higher temperature and their intensity which can, respectively, influence the size of these precipitations, their shape and the degree of dispersion. The transgranular character of the fractures of the S 6-5-2 type high-speed steel in the whole range tempering temperatures results from the presence of the undissolved carbides which while cracking in the region of stress concentration can constitute flaws of critical size which form the path of easy cracking through the grains. The transgranular cracking of the matrix of the real high-speed steels does not change the adventageous influence of molybdenum upon their fracture toughness. On the other hand, the carbides, undissolved during austenitizing, whose size distribution in the molybdenum steels from the point of view of cracking mechanics seems to be unsatisfactory, influence significantly the fracture toughness of these steels.  相似文献   

16.
The effect of an intercritical heat treatment on tempor embrittlement has been investigated for a rotor steel containing 0.25 pct C, 3.5 pct Ni, 1.7 pct Cr, 0.5 pct Mo, 0.1 pct V, and deliberate additions of phosphorus, tin, or antimony. Both martensitic and bainitic steels were held at the intercritical temperature of 1380°F (750°C) for times up to 40 h and were then quenched or cooled to obtain martensitic or bainitic transformation. The steels were then tempered, followed by water quenching or step cooling from the tempering temperature. The residual ferrite maintained a fine plate-like shape even after 40 h at the intercritical temperature. Embrittlement induced by step cooling from the final tempering was mark edly reduced by the intercritical treatment as compared to the embrittlement observed after conventional heat treatment; for example, AFATT, the increase in the Charpy V-notch 50 pct shear fracture transition temperature caused by step cooling, was reduced by at least 80°F (45°C) as a result of the intercritical treatment of steels containing 0.02 pct P. Molybdenum effectively reduced AFATT in intercritlcally heat-treated steels as well as in conventionally treated steels. Possible mechanisms for reducing temper embrittlement with the intercritical treatment are discussed.  相似文献   

17.
This paper evaluates an approach to developing a steel which combines resistance to softening on tempering with an economical use of alloy elements. To obtain the desired tempering behavior advantage has been taken of the ability of non-carbide forming elements to enhance the secondary hardening response and the tendency of vanadium additions to reduce the coarsening rate of Mo2C. Five alloys were investigated; these were a base secondary hardening steel, that base steel modified by the addition of 2 wt pct silicon and by the combined addition of 1 wt pct silicon and 1 wt pct aluminum. To these two modified alloys were made additions of 0.4 wt pct vanadium. It was found that both types of additions without vanadium enhance the secondary hardening response to the same significant degree. Both of these alloys soften rapidly as the tempering temperature is increased above 600 °C. However, with the addition of vanadium, hardnesses over RgC 50 are obtained after tempering at 650 °C. While silicon additions appear indispensable to this resistance to softening on tempering, silicon also favors the retention of primary carbides after austenitizing and, if present in sufficient amounts, can cause brittle intergranular fracture after tempering at high temperatures.  相似文献   

18.
The effects of silicon additions up to 3.5 wt pct on the as-cast carbides, as-quenched carbides, and as-tempered carbides of high-speed steels W3Mo2Cr4V, W6Mo5Cr4V2, and W9Mo3Cr4V were investigated. In order to further understand these effects, a Fe-16Mo-0.9C alloy was also studied. The results show that a critical content of silicon exists for the effects of silicon on the types and amount of eutectic carbides in the high-speed steels, which is about 3, 2, and 1 wt pct for W3Mo2Cr4V, W6Mo5Cr4V2, and W9Mo3Cr4V, respectively. When the silicon content exceeds the critical value, the M2C eutectic carbide almost disappears in the tested high-speed steels. Silicon additions were found to raise the precipitate temperature of primary MC carbide in the melt of high-speed steels that contained d-ferrite, and hence increased the size of primary MC carbide. The precipitate temperature of primary MC carbide in the high-speed steels without d-ferrite, however, was almost not affected by the addition of silicon. It is found that silicon additions increase the amount of undis-solved M6C carbide very obviously. The higher the tungsten content in the high-speed steels, the more apparent is the effect of silicon additions on the undissolved M6C carbides. The amount of MC and M2C temper precipitates is decreased in the W6Mo5Cr4V and W9Mo3Cr4V steels by the addition of silicon, but in the W3Mo2Cr4V steel, it rises to about 2.3 wt pct.  相似文献   

19.
Austenite reversion in martensitic steels is known to improve fracture toughness. This research focuses on characterizing mechanical properties and the microstructure of low-carbon, high-nickel steels containing 4.5 and 10 wt pct Ni after a QLT-type austenite reversion heat treatment: first, martensite is formed by quenching (Q) from a temperature in the single-phase austenite field, then austenite is precipitated by annealing in the upper part of the intercritical region in a lamellarization step (L), followed by a tempering (T) step at lower temperatures. For the 10 wt pct Ni steel, the tensile strength after the QLT heat treatment is 910 MPa (132 ksi) at 293 K (20 °C), and the Charpy V-notch impact toughness is 144 J (106 ft-lb) at 188.8 K (?84.4 °C, ?120 °F). For the 4.5 wt pct Ni steel, the tensile strength is 731 MPa (106 ksi) at 293 K (20 °C) and the impact toughness is 209 J (154 ft-lb) at 188.8 K (?84.4 °C, ?120 °F). Light optical microscopy, scanning electron and transmission electron microscopies, synchrotron X-ray diffraction, and local-electrode atom-probe tomography (APT) are utilized to determine the morphologies, volume fractions, and local chemical compositions of the precipitated phases with sub-nanometer spatial resolution. The austenite lamellae are up to 200 nm in thickness, and up to several micrometers in length. In addition to the expected partitioning of Ni to austenite, APT reveals a substantial segregation of Ni at the austenite/martensite interface with concentration maxima of 10 and 23 wt pct Ni for the austenite lamellae in the 4.5 and 10 wt pct Ni steels, respectively. Copper-rich and M2C-type metal carbide precipitates were detected both at the austenite/martensite interface and within the bulk of the austenite lamellae. Thermodynamic phase stability, equilibrium compositions, and volume fractions are discussed in the context of Thermo-Calc calculations.  相似文献   

20.
A number of metastableβ titanium alloys were examined to determine the effects of composition on strain-transformation behavior and precipitation hardening response. Maximum ductility as solution heat treated was observed in alloys slightly richer in alloy content than the minimum alloy content required to retain an all-β microstructure on quenching. Such materials transformed to a martensitic structure upon straining and, as a result of strain transformation, developed room temperature ductility exceeding that found in unalloyed titanium. Uniform elongation of 35 to 45 pct was observed in a number of compositions of this type containing major additions of Mo, V, Cr, or Mn. Auxiliary alloy additions of Sn, Al, or Zr, or ternary alloying with molybdenum were necessary to preventω embrittlement during quenching in alloys containing V, Cr, or Mn. Alloying with Fe, Cu, Co, or Ni resulted in low ductility as solution heat treated, but it is probable that optimum amounts of these additions were not studied in this investigation. Oxygen above about 1200 ppm also had a detrimental effect on ductility. All alloys studied showed precipitation hardening when heat treated in the 800° to 1100°F range. Tensile strengths of 170 to 190 ksi were readily attainable in most alloy systems. Ductility as precipitation hardened appeared to be higher in alloys containing at least 6 pct Mo or V than in other alloys studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号