共查询到20条相似文献,搜索用时 0 毫秒
1.
C-Si复合还原氮化合成矾土基β-SiAlON 总被引:1,自引:0,他引:1
设计β-SiAlON的z值为3,以68%的生矾土(粒度≤0.074mm,烧后Al2O3含量约68%)、13%的硅粉(粒度≤0.021mm)和19%的炭黑(粒度≤5μm)为原料混合均匀后,装入坩埚中,在氮化炉中分别于1100℃、1200℃、1300℃、1350℃、1400℃、1450℃、1500℃和1550℃氮化处理6h后,测氮化后试样的质量变化率,并借助XRD、SEM及EDS等手段,同时研究了C-Si复合还原氮化合成矾土基β-SiAlON的反应过程。研究结果表明:(1)采用C-Si复合还原氮化的试样,在1100~1200℃时主要是Si与氮气和SiO2反应生成的Si2N2O;1300~1400℃时,C开始参与还原氮化反应,体系中开始有β-SiAlON生成;1450~1550℃时,β-SiAlON量逐渐增多,1500℃达到最大值。(2)与单一采用C、Si的试样相比,采用C-Si复合还原氮化的试样生成的β-SiAlON含量相对高,结晶形貌相对较好。 相似文献
2.
3.
4.
研究了矾土基β-SiAlON(质量分数分别为15%、20%和25%)结合刚玉-碳化硅复合材料在1100~1300℃间的氧化行为。结果表明:复合材料具有较好的抗氧化性能,其氧化属保护型氧化,原因在于氧化后试样的表面存在着非晶质薄层,在非晶质薄层下又有一氧化致密层,阻止、减缓了O2向复合材料内部的进一步扩散;氧化层中的物相主要为β-SiAlON、碳化硅氧化后生成的莫来石和方石英;在氧化后期,复合材料的表观氧化活化能基本随着β-SiAlON含量的增加而增大,β-SiAlON含量为25%的复合材料的表观氧化活化能高达9586kJ.mol-1。 相似文献
5.
TiO2 在煤矸石碳热还原氮化过程中的作用 总被引:3,自引:1,他引:3
以煤矸石、炭黑为原料,分别加入0、2%、4%、6%、8%、10%、15%和20%的TiO2,组成的不同试样在流动氮气中进行热处理,热处理温度分别是1350 ℃、1400 ℃、1450 ℃、1500 ℃、1550 ℃,保温时间为6 h,测定热处理后试样的质量损失率,借助XRD、SEM和EDS等手段,分析热处理后试样的物相组成、显微结构和微区成分,研究引入TiO2对煤矸石还原氮化的作用.结果表明TiO2的加入有利于煤矸石还原氮化转变成β-SiAlON,并能促进β-SiAlON晶粒的生长发育.这也许是因为TiO2的加入有利于莫来石及SiO2分别还原氮化为X相及Si2N2O,Si2N2O与Al2O3固溶形成O'-SiAlON;最后X相和O'-SiAlON转变成β-SiAlON;多余的TiO2可以被还原氮化为耐火度高、耐磨性好的TiN.TiO2的最佳加入量为4%. 相似文献
6.
矾土基β-SiAlON结合刚玉-碳化硅复合材料的制备及性能 总被引:1,自引:2,他引:1
采用电熔刚玉(≤0.088mm、≤1mm和3~1mm三种粒度)、碳化硅颗粒(3~1mm)、Al2O3微粉、高铝矾土粉、Al粉和Si粉为原料,通过1500℃5h氮化反应制备了矾土基βSiAlON(z设计值为2)结合刚玉-碳化硅复合材料,研究了碳化硅颗粒加入量(分别为0、10%、20%、30%、40%)、Al2O3微粉加入量(分别为0、1%、3%、5%、7%)和βSiAlON理论生成量(分别为15%、20%和25%)对复合材料密度、显气孔率和常温强度的影响,以及不同βSiAlON理论生成量试样的热态抗折强度与温度(400~1400℃)的关系,并借助于XRD、SEM和EDS对复合材料进行了相组成和显微结构分析。结果表明:(1)随碳化硅颗粒加入量的增加,复合材料的体积密度下降,显气孔率和常温强度增加,加入30%碳化硅颗粒时,材料的综合性能较好。(2)随Al2O3微粉加入量的增加,复合材料的体积密度增加,显气孔率下降,其加入量以3%为宜。(3)复合材料的热态抗折强度随温度升高而增加,在1000℃时达到最高值;1000℃以后,强度下降,但在1400℃,βSiAlON理论生成量为20%和25%的矾土基βSiAlON结合刚玉-碳化硅复合材料的强度仍高于其常温时的强度。其原因是互相交错的柱状βSiAlON结合相填充在刚玉和SiC骨架的空隙中,起到了增强、增韧的作用。 相似文献
7.
8.
9.
10.
11.
粉煤灰的化学组成对其碳热还原氮化产物相组成和显微结构的影响 总被引:1,自引:0,他引:1
将粉煤灰和炭黑按n(Al2O3)∶n(C)=1∶5配料,经球磨混合、造粒后,在10MPa下压制成36mm×10mm的试样,经110℃干燥12h,在高温可控气氛炉内于1350℃流动氮气(流量400mL.min-1)中保温9h进行碳热还原氮化反应,然后对氮化产物进行XRD、SEM和EDAX分析。结果表明:粉煤灰与炭黑混合物的氮化产物是以β-SiAlON为主晶相的粉末,粉煤灰中m(SiO2)/m(Al2O3)比值越高且越接近合成β-SiAlON的理论比值,氮化产物中β-SiAlON和15R的含量就越高,铝的其他化合物的含量就越低;氮化产物中的棒状β-SiA-lON和15R清晰可见且交错分布,球状FeSi合金相弥散分布于其中。 相似文献
12.
碳热还原—氮化法合成—β′—sialon的研究 总被引:2,自引:0,他引:2
本文对β′-sialon的碳热还原———氮化合成进行了详细研究。结果表明:影响β′-sialon粉料合成的因素依次为合成温度、添加剂用量、氮气流量、保温时间。对合成的粉料进行含氮量和XRD检测。给出了本实验条件下合成β′-sialon的最佳工艺参数:合成温度1450℃,添加剂(Si3N4)用量5%,氮气流量为1.0L/min,保温时间为6h。同时探讨了反应过程和Z值的测量与计算方法。 相似文献
13.
14.
在热力学分析的基础上,以用后Al2O3-SiC-C铁沟料、煤矸石和活性炭为主要原料,采用碳热还原氮化法合成了β-SiAlON。详细讨论了合成温度(1 723和1 823 K)、活性炭加入量(理论需碳量、过量15%、过量30%和过量45%)、Si与Al元素摩尔比(分别为3:3,3.5:2.5和4:2)和煤矸石种类(低碳煤矸石和高碳煤矸石)对合成β-SiAlON的影响,并采用XRD、SEM和EDS等对合成产物进行分析。结果表明:(1)当合成温度由1 723 K增加到1 823 K时,合成后试样中β-SiAlON相含量增加,O’-SiAlON和α-Al2O3的含量降低;(2)加入过量的活性炭有利于合成后试样中β-SiAlON相含量的增加;(3)随着Si、Al元素摩尔比的增大,合成后试样中β-SiAlON相含量增多;(4)采用低碳煤矸石的试样中β-SiAlON相含量高于采用高碳煤矸石的,其原因是配料时前者中配入的活性炭更多,而活性炭的活性较高,更有利于促进碳热还原氮化反应的进行。 相似文献
15.
以Si粉、Al粉、Al2O3粉(α型和ρ型)和CaCO3为主要原料,采用高温氮化方法合成了Ca-αSiAlON,并对氮化后的试样进行XRD、SEM以及EDS分析,计算出了各试样中Ca-αSiAlON的相对含量。研究了氮化温度(1500℃和1550℃),保温时间(8h、12h和20h),CaCO3用量(理论用量、过量10%、过量20%),添加剂种类(Y2O3、TiO2、Fe2O3)及加入量(2%、3%、4%),αSi3N4晶种加入量(0、1%、3%、5%),Al2O3种类(α型和ρ型),Si粉和Al粉的用量(理论用量、过量10%)等工艺因素对Ca-αSiAlON合成量的影响。结果表明:(1)在1550℃氮化反应12h得到的合成产物中Ca-αSiAlON的相对含量最高,可达72.5%,其他物相为βSiAlON;(2)CaCO3加入量增多能够显著提高产物中Ca-αSiAlON的相对含量;(3)添加剂Y2O3、TiO2、Fe2O3均可促进Ca-αSiAlON的合成,其中Y2O3的促进作用最明显,TiO2次之;(4)αSi3N4晶种的引入能够显著提高Ca-αSiAlON的合成量;(5)Si粉和Al粉的量以及Al2O3种类对Ca-αSiAlON的氮化合成影响不明显;(6)SEM分析结果表明,合成的Ca-αSiAlON发育成柱状晶,长径比在3~10之间。 相似文献
16.
17.
将不同粒径(<15μm、43~77μm和>100μm)的粉煤灰微珠分别与一定比例的(低于理论用量20%、理论用量、高于理论用量10%)活性炭均匀混合后,置于氧化铝坩埚中,在高温氮化炉中分别于1300℃、1350℃、1400℃、1450℃和1500℃保温6h处理制备β-SiAlON空心球。借助XRD和SEM研究了温度、微珠粒径和活性炭用量对粉煤灰微珠氮化后相组成和形貌的影响。结果表明:粉煤灰微珠的氮化反应开始于1300℃;过量的活性炭是形成β-SiAlON空心球的必要条件,粒径是微珠氮化后维持球形形貌的重要因素;1500℃,在活性炭过量10%的条件下,利用粒径大于100μm的粉煤灰微珠制备的β-SiAlON空心球,具有表面粗糙、空心度大和密度低等特点。 相似文献
18.
19.
以菱镁石和煅烧铝矾土为主要原料,焦炭为还原剂,在氮气中采用碳热还原氮化法合成MgAl2O4-SiAlON材料,并利用XRD研究了试样在1 350、1 400、1 500和1 600 ℃下分别保温3 h处理后产物的物相变化及配碳量(分别为理论配碳量、过量50%和过量100%)对反应产物的影响.结果表明:(1)不同温度处理后的反应产物均存在MgAl2O4相和SiAlON相,增加配碳量有利于SiAlON相的生成.本试验确定合成MgAl2O4-SiAlON的适宜工艺条件为:氮化温度1 500 ℃,配碳过量50%.(2)配碳过量50%时,在1 350和1 400 ℃处理后产物中含有MgAl2O4、α-Al2O3和MgAl2Si4O6N4相,1 500 ℃处理后为MgAl2O4和β-SiAlON,1 600℃处理后为MgAl2O4和Mg1.25Si1.25Al1.25O3N3. 相似文献
20.
以正硅酸乙酯(tetraethoxysilane,TEOS),硝酸铝,蔗糖等为原料,通过溶胶-凝胶和微波碳热还原氮化法合成了β-sialon超细粉.研究了铝碳摩尔比、温度、埋粉条件、晶种、添加剂等工艺条件对合成β-sialon超细粉的影响.结果表明:铝碳摩尔比显著影响β-sialon超细粉的合成,过量碳有利于形成β-sialon超细粉.1573~1623 K为最佳合成温度.埋粉不利于β-sialon超细粉的合成.晶种对β-sialon超细粉的合成没有显著影响,添加剂Fe2O3对反应有明显促进作用.用场发射扫描式电子显微镜观察产物的显微形貌,结果表明:合成β-sialon超细粉的粒度大约为100nm. 相似文献