首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was designed to describe the relationship between mineral metabolism and urine production by lactating dairy cows. Regression studies were performed to predict urine volume from either observed concentrations of K, Na, and N in urine or observed intakes of K, Na, and N. In addition, empirical equations were derived to assist in the estimation of urinary excretion of K, Na, and N in practical situations. Data used to derive the relationships (n = 67 observations) and to evaluate them (n = 62 observations) were obtained from a wide range of feeding conditions in 10 independent balance trials with lactating cows. Linear relationships of K, Na, and N that were excreted in urine or consumed were fitted against the observed urine production, which explained 89.8% (SE = 4.2 kg of urine/d) and 84.8% (SE = 5.2 kg of urine/d) of the variance. In evaluating these relationships, the observed variation in urine production was predicted with acceptable accuracy. Mean prediction errors were 4.5 and 5.6 kg of urine/d. Urine production could be predicted based on relationships between intakes of digestible Na, K, and N and their excretion in milk and urine. Reliable predictions of urine production are important as attention on the effect of manure production by dairy cows on nutrient management at the farm level increases.  相似文献   

2.
《Journal of dairy science》2022,105(9):7462-7481
Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.  相似文献   

3.
A sensitive indicator of biotin status for lactating dairy cows is necessary to understand factors that affect milk yield responses to biotin supplementation. 3-Hydroxyisovaleric acid (3HIA) is an alternative metabolite in the pathway of Leu catabolism when the biotin-dependent enzyme methylcrotonyl-coenzyme A carboxylase is limiting. We evaluated urinary excretion of 3HIA as a determinant of biotin status in lactating dairy cows. We hypothesized that high-producing cows would have a greater biotin requirement and excrete more 3HIA than low-producing cows and that biotin supplementation would decrease 3HIA excretion. Twenty high-producing and 20 low-producing Holstein cows (43 ± 5 and 23 ± 4 kg/d of milk, respectively) were fed diets that contained either 0 or 0.96 mg/kg of supplemental biotin. On d 16 cows were given an intraruminal infusion of 1.4 mol of isovaleric acid and urine was sampled. Biotin supplementation did not affect basal urinary excretion of 3HIA. The infusion of isovaleric acid increased urinary excretion of 3HIA (maximum at 8 h after infusion), but biotin supplementation did not attenuate this increase. The increase in urinary 3HIA excretion was less for low-producing cows than for high-producing cows. Biotin increased yields of milk and milk components in high-producing cows but had no effect in low-producing cows. However, potential measures of biotin status (concentrations of avidin-binding substances in the plasma, milk, and urine, and urinary 3HIA excretion) responded similarly to biotin supplementation for both high- and low-producing cows. A sensitive indicator of biotin status for lactating dairy cows is still needed.  相似文献   

4.
A large data set derived from total diet digestibility assessments on lactating dairy cows (535 Holstein-Friesian and 29 Norwegian) was used to examine effects of dietary and animal factors on manure (feces and urine) nitrogen (N) output and to develop mitigation strategies and prediction equations for manure N output in lactating dairy cows. Manure N output was positively and significantly related to live weight, milk yield, dietary crude protein (CP) concentration, dry matter intake, and N intake. Reducing the dietary CP concentration or increasing the milk yield decreased manure N output per kilogram of milk yield. Prediction equations for manure N output using live weight and milk yield, either alone or combined, had relatively low R2 (0.227 to 0.474) and large standard error (70.6 to 85.6) values. Addition of dietary CP concentration to these relationships considerably increased R2 to 0.754 and reduced the standard error to 48.2. Relating manure N output to N intake produced a very high r2 (0.901) and a very low standard error (30.6). The addition of live weight and milk yield to this relationship as supporting predictors only marginally increased R2 to 0.910 and reduced the standard error to 29.3. The internal validation of these equations revealed that use of N intake as the primary predictor produced a very accurate prediction of manure N output. In situations in which data on N intake are not available, prediction equations based on dietary CP concentration, live weight, and milk yield together can produce a relatively accurate assessment of manure N output.  相似文献   

5.
The objective of this study was to evaluate feces, urine, and N excretion by Jersey and Holstein cows. Sixteen multiparous cows (n = 8 per breed) were fed 2 experimental rations at calving in a switchback experimental design. Diets were 50% forage and based on corn meal (control) or whole cottonseed. Half the cows in each breed started on the control diet and half started on the whole cottonseed diet. Cows were switched to the other diet at 60 d in milk and switched back to their original diet at 165 d in milk. Pairs of cows were moved into open-circuit respiration chambers on d 49, 154, and 271 of lactation for 7-d measurement periods. While in the chambers, total collection of feed refusals, milk, recovered hair, feces, and urine was conducted. No effect of the interaction of diet and breed was observed for measures of nutrient digestibility and manure excretion. Total daily manure excretion was lower in Jersey cows than in Holstein cows, with reductions generally proportional to changes in feed intake. Jersey cows consumed 29% less feed and excreted 33% less wet feces and 28% less urine than Holstein cows. Intake, fecal, and urinary N were reduced by 29, 33, and 24%, respectively, in Jersey cows compared with Holstein cows. Equations from American Society of Agricultural and Biological Engineers underpredicted observed values for all manure measures evaluated (urine, manure solids, N, wet manure), and breed bias was observed in equations predicting excretion of urine, N, and wet manure. Although these equations include animal and dietary factors, intercepts of regression of observed values on predicted values differed between Holsteins and Jerseys for those 3 measures. No breed bias was observed in the prediction of manure solids excretion, however, making that equation equally appropriate for Jerseys and Holsteins. The effect of breed on manure and nutrient excretion has significant nutrient management implications.  相似文献   

6.
A meta-analysis was conducted to examine potential empirical relationships between dietary cation-anion difference (DCAD) (Na + K - Cl) and the response of lactating dairy cows. The database was developed from 12 studies published between 1984 and 1997 that included a total of 17 trials, 69 dietary treatments, and 230 cows. Results indicated that DCAD affected performance of lactating dairy cows. Maximum milk yield and feed intake were reached when DCAD was 34 and 40 meq/100 g of feed dry matter, respectively. Blood pH and HCO3 concentrations increased with DCAD, indicating an improved acid-base balance of lactating dairy cows. Changes in urinary pH and urinary excretion of Na, K, and Cl were consistent with varying DCAD, thus dietary acidity or alkalinity. The effects of DCAD were likely mediated via modification of acid-base status in the cows.  相似文献   

7.
Prediction of manure and nutrient excretion from dairy cattle   总被引:4,自引:0,他引:4  
Accurate estimates of manure excretion are needed for planning manure storage facilities and for nutrient management. Data sets from metabolism studies conducted at several universities were compiled and evaluated for excretion of total manure, N, P, and K. Animal groups included calves weighing up to 204 kg, heifers weighing between 274 and 613 kg, nonlactating cows, and lactating cows. Regression equations were developed to predict excretion of total manure, total dry matter, N, P, and K. Predictors used in the regression equations for lactating cows included milk yield, percentages of protein and fat in milk, dietary concentrations of crude protein and neutral detergent fiber, and intakes of nutrients. The regression equations provide improved predictions of excretion and enable more accurate planning of manure storage and nutrients to be managed at the farm level.  相似文献   

8.
Eight primiparous lactating Holstein cows (47 ± 10 d in milk) fitted with ruminal cannulae were used to determine the effect of dietary cation-anion difference (DCAD) and dietary crude protein (CP) concentration on milk yield and composition, acid-base chemistry, and measures of N metabolism in lactating dairy cows. Treatments were arranged as a 2 × 2 factorial in a randomized complete block design to provide 15 or 17% CP and DCAD of 25 or 50 mEq (Na + K - Cl)/100 g of feed dry matter [15 or 39 mEq (Na + K) - (Cl + S)/100 g of feed dry matter]. High DCAD improved dry matter intake, milk yield, and concentrations of milk fat and protein. An interaction of DCAD and CP was observed for uric acid excretion, an indicator of microbial protein yield. Uric acid excretion was higher for high DCAD than for low DCAD in low CP diets and was similar for low and high DCAD with high CP. Serum bicarbonate concentration, urinary bicarbonate excretion, blood pH, and serum Na were elevated for high DCAD compared with low DCAD. Fractional excretion of Na, K, Cl, and Ca increased for high DCAD. Blood urea N and urinary urea N were greater for high than for low CP diets. No differences due to DCAD were observed for these parameters. Results of this study suggest that, in early lactation cows, blood acid-base chemistry is altered by differences in DCAD that range between the high and low ends of the desired DCAD range. Modifications of acid-base chemistry and the corresponding changes in protein metabolism may allow for more efficient feeding of protein and better nutritional management of the lactating dairy cow.  相似文献   

9.
The effect of starch source and supplemental phytic acid (PA) on N partitioning and excretion and ammonia volatilization from dairy manure was evaluated with 8 midlactation cows. Cows were randomly assigned to treatments in replicated 4 x 4 Latin squares with four 18-d periods. Diets were 61% forage, 25% starch, 17.2% crude protein, and 31% neutral detergent fiber and included dry ground corn (DG) or steam flaked corn (SF) with no supplemental P (L; 0.34% P) or supplemental purified PA (0.45% P) to provide additional P from a non-mineral source. Total collection of milk, urine, and feces was conducted on d 16 to 18 of each period. Cows fed SF had lower dry matter (DM) intakes than those fed DG, which, in addition to increased starch digestibility and ruminal fermentation, contributed to higher DM digestibility. Cows fed SF had reduced feces and urine excretion compared with cows fed DG. Also, N intake for cows fed SF was lower, and N digestibility was higher, compared with cows fed DG; therefore, N excretion in both feces and urine was reduced in these cows. Despite the differences in DM intake, lactation performance was not affected by starch sources. Therefore, the efficiency of N utilization increased with SF. Addition of PA did not affect N intake or utilization. Feces and urine were subsampled from each cow, and wet feces and urine were mixed in sealed chambers in the proportions excreted. Ammonia volatilization was measured for 36 h using acid traps sampled on a planned time course. Nitrogen at time zero (A0), rate of ammonia emission (k), and residual N (R) were calculated using the exponential decay model At = A0 e(-kt) + R. Rate of ammonia loss from mixed feces and urine was lower from cows fed SF than from those fed DG. Altering dietary starch source to improve nutrient digestibility and to reduce N excretion by lactating cows may provide opportunity to reduce ammonia losses from manure.  相似文献   

10.
Reliable estimates of fresh manure water output from dairy cows help to improve storage design, enhance efficiency of land application, quantify the water footprint, and predict nutrient transformations during manure storage. The objective of the study was to construct a mechanistic, dynamic, and deterministic mathematical model to quantify urinary and fecal water outputs (kg/d) from individual lactating dairy cows. The model contained 4 body water pools: reticulorumen (QRR), post-reticulorumen (QPR), extracellular (QEC), and intracellular (QIC). Dry matter (DM) intake, dietary forage, DM, crude protein, acid detergent fiber and ash contents, milk yield, and milk fat and protein contents, days in milk, and body weight were input variables to the model. A set of linear equations was constructed to determine drinking, feed, and saliva water inputs to QRR and fractional water passage from QRR to QPR. Water transfer via the rumen wall was subjected to changes in QEC and total water input to QRR. Post-reticulorumen water passage was adjusted for DM intake. Metabolic water production and respiratory cutaneous water losses were estimated with functions of heat production in the model. Water loss in urine was driven by absorbed N left after being removed via milk. Model parameters were estimated simultaneously using observed fecal and urinary water output data from lactating Holstein cows (n = 670). The model was evaluated with data that were not used for model development and optimization (n = 377). The observations in both data sets were related to thermoneutral conditions. The model predicted drinking water intake, fecal, urinary, and total fresh manure water output with root mean square prediction errors as a percentage of average values of 18.1, 15.6, 30.6, and 14.6%, respectively. In all cases, >97% of the prediction error was due to random variability of data. The model can also be used to determine saliva production, heat and metabolic water production, respiratory cutaneous water losses, and size of major body water pools in lactating Holstein cows under thermoneutral conditions.  相似文献   

11.
Four early-lactating dairy cows were randomly allocated to 4 diets with dietary cation-anion difference [DCAD; (Na + K) - (Cl- + S2-) mEq/100 g dry matter)] values of +14, +18, +24, and +45. Diets were formulated to be isoenergetic and isonitrogenous, and supplied similar levels of P (0.46%) and Ca (0.77%). The salts, MgCl2, MgSO4, K2CO3, and NaHCO3 were used to alter DCAD. The main objective of the study was to ascertain whether a decrease in DCAD would reduce fecal P excretion in lactating dairy cattle. The experiment was conducted as a 4 x 4 Latin square design with 21-d periods. During the last 5 d, diets were offered at a restricted level and samples of blood, milk, feces, and urine were collected. Measures of acid-base status of the cows were linearly related to DCAD, but the animals did not experience metabolic acid stress. Neither fecal P nor urinary P was affected by DCAD, and there was no change in overall P balance. Plasma P tended to increase and blood concentrations of ionized Ca were enhanced as DCAD decreased; P excretion in milk showed a quadratic response to DCAD. Milk yield and milk composition were unaffected by changes in DCAD. Although DCAD may have influenced P homeostasis in lactating cows, there was no evidence that, within the range of + 14 to + 45 mEq/ 100 g dry matter, DCAD could be used as a nutritional strategy to reduce manure P from dairy cattle.  相似文献   

12.
The objective of this study was to examine the effect of replacing conventional corn silage (CCS) with brown midrib corn silage (BMCS) in dairy cow diets on enteric CH4 emission, nutrient intake, digestibility, ruminal fermentation characteristics, milk production, and N excretion. Sixteen rumen-cannulated lactating cows used in a crossover design (35-d periods) were fed (ad libitum) a total mixed ration (forage:concentrate ratio = 65:35, dry matter basis) based (59% dry matter) on either CCS or BMCS. Dry matter intake and milk yield increased when cows were fed BMCS instead of CCS. Of the milk components, only milk fat content slightly decreased when cows were fed the BMCS-based diet compared with when fed the CCS-based diet (3.81 vs. 3.92%). Compared with CCS, feeding BMCS to cows increased yields of milk protein and milk fat. Ruminal pH, protozoa numbers, total VFA concentration, and molar proportions of acetate and propionate were similar between cows fed BMCS and those fed CCS. Daily enteric CH4 emission (g/d) was unaffected by dietary treatments, but CH4 production expressed as a proportion of gross energy intake or on milk yield basis was lower for cows fed the BMCS-based diet than for cows fed the CCS-based diet. A decline in manure N excretion and a shift in N excretion from urine to feces were observed when BMCS replaced CCS in the diet, suggesting reduced potential of manure N volatilization. Results from this study show that improving fiber quality of corn silage in dairy cow diets through using brown midrib trait cultivar can reduce enteric CH4 emissions as well as potential emissions of NH3 and N2O from manure. However, CH4 emissions during manure storage may increase due to excretion of degradable OM when BMCS diet is fed, which merits further investigation.  相似文献   

13.
Forage chemistry can affect intake, digestion, milk production, and manure excretion. Although information is available on the effects of forage protein-binding polyphenols on small ruminant production and manure excretion, little information is available for dairy cattle. The objective of this study was to compare fecal and urinary N excretion of diets formulated with alfalfa (Medicago sativa L.) silage versus condensed tannin-containing birdsfoot trefoil (Lotus corniculatus) or o-quinone-containing red clover (Trifolium pratense L.) silages. Significantly higher concentrations of N were excreted in urine by lactating Holstein dairy cows fed red clover and low-tannin birdsfoot trefoil (8.2 g/L) than by cows fed high-tannin birdsfoot trefoil or alfalfa (7.1 g/L). Fecal N concentrations were similar (33.6 g/kg) among all diets. Dairy cows fed red clover had lower rates of urinary N excretion (5.0 g/h) compared with other forages (6.6 g/h). Fecal N excretion rates were lowest for red clover (4.1 g/h), intermediate for alfalfa (5.8 g/h), and greatest for cows fed high- and low-tannin birdsfoot trefoil (6.4 g/h). The ratio of fecal N to urinary N was highest for high-tannin trefoil, lowest for alfalfa and red clover, and higher in excreta collected in morning than evening. Concentrations of neutral detergent fiber (NDF) in feces, of N in NDF (NDIN) and acid detergent fiber (ADIN), and relative amounts of NDIN and ADIN excreted in feces were significantly higher from cows fed high-tannin birdsfoot trefoil than the other silage types. Study results imply that collection of excreta for environmental studies needs to consider forage polyphenol and diurnal effects on chemistry of dairy excreta.  相似文献   

14.
The effect of a fibrolytic enzyme formulation on N and P intake, partitioning, and excretion was evaluated in dairy cows in early and late lactation. Twelve lactating Holstein cows (6 early lactation, 6 late lactation) were fed diets with or without the enzyme formulation in a switchback design with three, 4-wk periods. Diets for the early lactation group contained 45% forage, and late lactation diets contained 61% forage. Cows fed diets containing the enzyme formulation gained more weight than those on the control diet; this weight gain with enzyme addition was greater in early lactation cows than in late lactation cows. The main effect of enzyme treatment did not significantly affect apparent digestibility or excretion of N and P, or retention of these nutrients in body tissue. Interactions observed between the effects of group (stage of lactation) and treatment indicated differences in the nature of the milk yield and manure excretion responses to enzyme treatment between early and late lactation cows. These interactions were due to numerical increases in milk yield, feces excretion, and N excretion in early lactation cows fed diets containing the enzyme formulation compared to control, and slight decreases in these measures in late lactation cows with enzyme addition. Cows fed diets containing a direct-fed fibrolytic enzyme formulation had increased body weight gain, but the effect of addition of the enzyme formulation on milk yield and manure nutrient excretion differed for early and late lactation cows.  相似文献   

15.
Milk urea nitrogen (MUN; mg of N/dL) has been shown to be related to excretion of urinary urea N (UUN; g of N/d) and total excretion of urinary N (UN; g of N/d) in dairy cows. In the present experiment, it was hypothesized that MUN and the relationship between MUN and UUN or UN is affected by urine volume as a result of dietary sodium chloride intake. Twelve lactating Holstein-Friesian dairy cows (mean ± SD: milk production 28.1 ± 3.23 kg/d and 190 ± 41 d in milk), of which 4 were fitted with catheters in the urine bladder and jugular vein, were randomly assigned to 4 dietary levels of sodium chloride (3, 9, 14, and 19 g of Na/kg of DM) according to a triple 4 × 4 Latin square design. Cows were fed at 95% of ad libitum intake, excluding salt addition. Milk was analyzed for MUN and protein content; urine was analyzed for total N, urea, and creatinine content; feces were analyzed for total N and DM content; and blood plasma was analyzed for urea and creatinine content. Creatinine clearance rate (CCR; L/min) and renal urea reabsorption ratio were estimated based on plasma concentrations of urea and creatinine, and total excretion of urea and creatinine in urine. Intake of DM and N, milk production, and milk protein content were (mean ± SD), on average, 21.4 ± 1.24 kg/d, 522 ± 32.0 g/d, 25.4 ± 2.53 kg/d, and 3.64 ± 0.186%, respectively. A linear relationship was found between Na intake and urine production [urine (kg/d; mean ± SE) = 7.5 ± 4.33 + 0.136 ± 0.0143 × Na intake (g/d)] and between Na intake and MUN [MUN (mg/dL; mean ± SE) = 13.5 ± 0.35 − 0.0068 ± 0.00104 × Na intake (g/d)]. Despite the decrease in MUN with increased Na intake, UN excretion increased linearly with Na intake. Excretion of UUN was not affected by dietary Na content. A linear plateau relationship was observed between CCR and renal urea reabsorption. An increase in CCR coincided with an increase in calculated renal urea reabsorption until a CCR breakpoint value (mean ± SD) of 1.56 ± 0.063 L/min was reached. We conclude that Na intake is negatively related to MUN, whereas UUN is not affected. Variation in mineral intake levels that affect urine volume should, therefore, be taken into account when using MUN as an indicator of UUN in dairy cattle.  相似文献   

16.
This experiment determined the effects of dietary protein solubility on amount, form, and route of nitrogen loss in lactating Holstein dairy cows, and the ability of the Cornell Net Carbohydrate and Protein System (CNCPS) to accurately predict rumen microbial yield, serum urea N (SUN), milk urea N (MUN), and fecal N. Eighteen multiparous Holstein cows were assigned randomly to one of three dietary treatments that were similar in crude protein (17.7%) content but differed in their content of soluble intake protein (SIP). Dietary contents of SIP, as % of total CP were 30, 36, and 48%. The experimental period was 21 d, and total N balance collections were done during the last 5 d. As dietary content of SIP increased, excretion of urinary N increased quadratically, and it was the primary route of N excretion. Urinary excretion of purine derivatives (PD) responded quadratically as dietary SIP content increased. The CNCPS predicted a quadratic decrease in total metabolizable protein (MP) supply. No effect of dietary content of SIP was detected on MUN and SUN. The CNCPS predicted a quadratic decrease in SUN and MUN as dietary SIP increased. Results from this study indicated that changing the dietary content of SIP altered routes of N excretion in dairy cows, but had no effect on total N balance. The CNCPS did not adequately predict changes in SUN and MUN for cows fed diets varying in SIP.  相似文献   

17.
These experiments were designed to investigate nutritional means of reducing urine N excretion by grazing cows. In experiment 1, 36 Holstein-Friesian cows averaging 92 d in milk were fed either 1 or 6 kg of a high protein concentrate or 6 kg of a low protein concentrate. Pasture dry matter (DM) intake was higher for cows fed 1 kg of high protein concentrate (15.4 +/- 0.62 kg/d) than for cows fed 6 kg of low protein concentrate (13.4 +/- 0.55) but not for cows fed 6 kg of high protein concentrate (13.9 +/- 0.96). The reduction in pasture intake per kg of concentrate DM ingested amounted to 0.35 and 0.47 kg of pasture DM for cows fed 6 kg of high protein and 6 kg of low protein concentrate, respectively. Milk yield and milk protein yield were higher for cows fed 6 kg of high protein concentrate than for cows fed 1 kg of high protein concentrate. Cows fed 6 kg of high protein concentrate had the highest levels of N intake, total N excretion, and urine N excretion. The proportion of N excreted in the urine was lowest for cows fed 6 kg of low protein concentrate. Milk N excretion as a proportion of ingested N was higher for cows fed 6 kg of low protein concentrate than for cows fed 6 kg of high protein concentrate but not for cows fed 1 kg of high protein concentrate. In experiment 2, 24 Holstein-Friesian cows averaging 211 d in milk were supplemented with 4 kg of rolled barley or 4.32 kg of NaOH-treated barley. Milk yield and milk protein yield tended to be higher for cows fed rolled barley than for cows fed NaOH-treated barley. There was no difference in N intake, fecal N excretion, urinary N excretion, or milk N output between diets. Milk urea N concentration was lower for cows fed rolled barley. Significant positive linear relationships were found between N intake and fecal N excretion, urine N excretion, and milk N excretion in experiment 1. In experiment 2, the relationships between N intake and fecal N excretion and urine N excretion were curvilinear, with urine N excretion increasing at a decreasing rate, and fecal N excretion increasing at an increasing rate, as N intake increased. The N excreted by dairy cows may be partitioned to fecal N if supplements based on high concentrations of fermentable organic matter and low concentrations of N are fed. Refinement of this nutritional strategy may allow reduced N excretion without reducing animal performance.  相似文献   

18.
Sixteen multiparous lactating Holstein cows (four with rumen cannulae) were fed diets varying in the content and form of ruminally degradable carbohydrates and N to examine dietary effects on microbial protein synthesis (MPS) and whole animal N efficiency, and to evaluate the use of a model based on milk urea N (MUN) for predicting urinary N excretion and N utilization efficiency (NUE). A replicated Latin square design (consisting of diet and experimental period) was employed. The four diets consisted of two low protein diets with either 20% ground corn (diet LP) or 13.5% ground corn plus 3% sucrose (diet LP sucrose) and two high protein diets with 13.5% corn and 3% sucrose with either urea (diet HP urea) or soybean meal (diet HP SBM) as supplemental rumen-degradable protein sources. The intakes of dry matter and N were increased by increasing dietary crude protein (CP) level. However, the yields of milk and milk protein were not affected by CP level. Yield of microbial protein was reduced by sucrose and increased by CP level. There were no differences between urea and SBM supplementation on DM intake, milk yield, or MPS. Mean urinary N excretion for all cows (252 g/d) was underestimated by 55 g/d or overestimated by 25 or 33 g/d using alternative equations based on MUN. Subsequently, NUE (mean = 22.4%) was underestimated by 7.5, 3.2, or 2.9%, using a previously published set of equations. Urinary N excretion and NUE could be predicted within 10 and 14% of observed values, respectively, using a set of equations incorporating MUN. Therefore, MUN appears to be a useful tool to help assess N losses from lactating cows.  相似文献   

19.
Our objective was to examine the effects of dietary cation-anion difference (DCAD) with different concentrations of dietary crude protein (CP) on performance and acid-base status in early lactation cows. Six lactating Holstein cows averaging 44 d in milk were used in a 6 × 6 Latin square design with a 2 × 3 factorial arrangement of treatments: DCAD of −3, 22, or 47 milliequivalents (Na + K - Cl - S)/100 g of dry matter (DM), and 16 or 19% CP on a DM basis. Linear increases with DCAD occurred in DM intake, milk fat percentage, 4% fat-corrected milk production, milk true protein, milk lactose, and milk solids-not-fat. Milk production itself was unaffected by DCAD. Jugular venous blood pH, base excess and HCO3 concentration, and urine pH increased, but jugular venous blood Cl concentration, urine titratable acidity, and net acid excretion decreased linearly with increasing DCAD. An elevated ratio of coccygeal venous plasma essential AA to nonessential AA with increasing DCAD indicated that N metabolism in the rumen was affected, probably resulting in more microbial protein flowing to the small intestine. Cows fed 16% CP had lower urea N in milk than cows fed 19% CP; the same was true for urea N in coccygeal venous plasma and urine. Dry matter intake, milk production, milk composition, and acid-base status did not differ between the 16 and 19% CP treatments. It was concluded that DCAD affected DM intake and performance of dairy cows in early lactation. Feeding 16% dietary CP to cows in early lactation, compared with 19% CP, maintained lactation performance while reducing urea N excretion in milk and urine.  相似文献   

20.
Heat production (HP) represents a major energy cost in lactating dairy cows. Better understanding of factors that affect HP will improve our understanding of energy metabolism. Our objective was to derive models to explain variation in HP of lactating Jersey cows. Individual animal-period data from 9 studies (n = 293) were used. The data set included cows with a wide range (min to max) in days in milk (44–410) and milk yield (7.8–43.0 kg/d). Diets included corn silage as the predominate forage source, but diets varied (min to max on DM basis) in crude protein (CP; 15.2–19.5%), neutral detergent fiber (NDF; 35.5–43.0%), starch (16.2–31.1%), and crude fat (2.2 to 6.4%) contents. Average HP was (mean ± standard deviation) 22.1 ± 2.86 Mcal/d, or 28.1 ± 3.70% of gross energy intake. Eight models were fit to explain variation in HP: (1) dry matter intake (DMI; INT); (2) milk fat, protein, and lactose yield (MILKCOMP); (3) INT and milk yield (INT+MY); (4) INT and MILKCOMP/DMI (INT+MILKCOMP); (5) mass of digested NDF, CP, and starch (DIG); (6) INT and digested energy (INT+DE); (7) INT and NDF, CP, and starch digestibility (INT+DIG); or (8) INT+MILKCOMP model plus urinary N excretion (INT+MILKCOMP+UN). For all HP models, metabolic body weight was included. All models were derived via a backward elimination approach and included the random effects of study, cow, and period within block within study. The INT models adequately explained variation in HP with a nonrandom effect–adjusted concordance correlation coefficient of 0.84. Similar adjusted concordance correlation coefficients (0.79–0.85) were observed for other HP models. The HP associated with milk protein yield and supply of digestible protein was greater than other milk production and nutrient digestibility variables. The HP associated with urinary N excretion was 5.32. Overall, HP can be adequately predicted from metabolic body weight and DMI. Milk component yield, nutrient digestibility, or urinary N excretion explained similar variation as DMI. Coefficients for milk protein and protein digestion suggest that digestion and metabolism of protein and synthesis of milk protein contribute substantially to HP of a dairy cow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号