首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium hexametaphosphate (SHMP) is commonly used as an emulsifying salt (ES) in process cheese, although rarely as the sole ES. It appears that no published studies exist on the effect of SHMP concentration on the properties of process cheese when pH is kept constant; pH is well known to affect process cheese functionality. The detailed interactions between the added phosphate, casein (CN), and indigenous Ca phosphate are poorly understood. We studied the effect of the concentration of SHMP (0.25-2.75%) and holding time (0-20 min) on the textural and rheological properties of pasteurized process Cheddar cheese using a central composite rotatable design. All cheeses were adjusted to pH 5.6. The meltability of process cheese (as indicated by the decrease in loss tangent parameter from small amplitude oscillatory rheology, degree of flow, and melt area from the Schreiber test) decreased with an increase in the concentration of SHMP. Holding time also led to a slight reduction in meltability. Hardness of process cheese increased as the concentration of SHMP increased. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is attributable to residual colloidal Ca phosphate, was shifted to lower pH values with increasing concentration of SHMP. The insoluble Ca and total and insoluble P contents increased as concentration of SHMP increased. The proportion of insoluble P as a percentage of total (indigenous and added) P decreased with an increase in ES concentration because of some of the (added) SHMP formed soluble salts. The results of this study suggest that SHMP chelated the residual colloidal Ca phosphate content and dispersed CN; the newly formed Ca-phosphate complex remained trapped within the process cheese matrix, probably by cross-linking CN. Increasing the concentration of SHMP helped to improve fat emulsification and CN dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.  相似文献   

2.
Effects of 2 types of emulsifying salts (ES) on the functionality of nonfat pasta filata cheese were examined. Nonfat pasta filata cheese was made from skim milk by direct acidification. Trisodium citrate (TSC) and tetrasodium pyrophosphate (TSPP) were added to curds (at 1, 3, and 5%, wt/wt) at the dry-salting step, together with glucono-δ-lactone to maintain a constant pH. When TSC was added, there were no significant compositional differences, although insoluble Ca and P contents significantly decreased with the addition of TSC. When TSPP was added, fat content was not significantly different, but protein content decreased with increasing concentrations of TSPP. Both insoluble Ca and P contents increased with the addition of 1% TSPP. The addition of ES affected textural and functional properties. With increasing concentrations of TSC, meltability increased, whereas increasing the TSPP content decreased meltability. Cheese made with 1% TSC had better stretchability compared with control cheese. However, the addition of more than 3% TSC decreased stretchability. Addition of TSPP caused a considerable decrease in stretchabilty. Scanning electron microscopy revealed that the size and number of serum pockets decreased and protein appeared more hydrated with the addition of both ES. These results suggested that TSC and TSPP influenced the functionality of nonfat pasta filata cheese differently; that is, the effects of TSC were probably caused by a decrease in the number of colloidal calcium phosphate cross-links and an increase in electrostatic repulsion, whereas the effects of TSPP may have been related to the formation of new TSPP-induced casein-casein interactions.  相似文献   

3.
Natural cheese is the major ingredient utilized to manufacture process cheese. The objective of the present study was to evaluate the effect of natural cheese characteristics on the chemical and functional properties of process cheese. Three replicates of 8 natural (Cheddar) cheeses with 2 levels of calcium and phosphorus, residual lactose, and salt-to-moisture ratio (S/M) were manufactured. After 2 mo of ripening, each of the 8 natural cheeses was converted to 8 process cheese foods that were balanced for their composition, including moisture, fat, salt, and total protein. In addition to the standard compositional analysis (moisture, fat, salt, and total protein), the chemical properties (pH, total Ca, total P, and intact casein) and the functional properties [texture profile analysis (TPA), modified Schreiber melt test, dynamic stress rheometry, and rapid visco analysis] of the process cheese foods were determined. Natural cheese Ca and P, as well as S/M, significantly increased total Ca and P, pH, and intact casein in the process cheese food. Natural cheese Ca and P and S/M also significantly affected the final functional properties of the process cheese food. With the increase in natural cheese Ca and P and S/M, there was a significant increase in the TPA-hardness and the viscous properties of process cheese food, whereas the meltability of the process cheese food significantly decreased. Consequently, natural cheese characteristics such as Ca and P and S/M have a significant influence on the chemical and the final functional properties of process cheese.  相似文献   

4.
Emulsifying salts and hydrocolloids, cook time, cook temperature, and pH were evaluated to characterize their effects on firmness, meltability, and spreadability of fat‐free process‐cheese spreads. Disodium phosphate and trisodium citrate produced properties closest to those of a full‐fat reference cheese, with trisodium citrate providing the most meltability. In all cases, incorporation of hydrocolloids resulted in increased firmness, decreased melt, with varying results on spreadability. Increases in cook time generally produced softer, more meltable cheeses, while increases in cook temperature decreased firmness and increased meltability and spreadability.  相似文献   

5.
The effects of adding CaCl2, orthophosphate, citrate, EDTA, or a mixture of these, to reconstituted skim milk (90 g of solids/kg solution) on the gelation of renneted milk were mediated by changes in Ca2+ activity and the casein micelle. At pH 6.65, the addition of citrate or EDTA, which removed more than 33% of the original colloidal calcium phosphate with the accompanying release of 20% casein from the micelle, completely inhibited gelation. Reformation of the depleted colloidal calcium phosphate and casein in the micelle, by the addition of CaCl2, removed this inhibition. When the minimum requirements for colloidal calcium phosphate and casein in the micelle were met, the coagulation time decreased with increasing Ca2+ activity, leveling off at high Ca2+ activity. The storage modulus of renneted gels, measured at 3 h, increased with increasing colloidal calcium phosphate content of micelles up to a level at which it was approximately 130% of the original colloidal calcium phosphate in the micelles. Further increases in colloidal calcium phosphate by the addition of CaCl2, orthophosphate, or mixtures of these, which did not change the proportion of casein in the micelle, decreased the storage modulus. The gelation of the renneted milk was influenced by Ca2+ activity, the amounts of colloidal calcium phosphate, and casein within the micelle, with the effects of colloidal calcium phosphate and casein within the micelle clearly dominating the storage modulus. These results are consistent with the model of Horne (Int. Dairy J. 8:171-177, 1998) which postulates that, following cleavage of the stabilizing K-casein hairs by rennet, the properties of the rennet gel are determined by the balance between the electrostatic and hydrophobic forces between casein micelles.  相似文献   

6.
ABSTRACT: Functional properties of pasteurized process cheese (PPC) made with different types of emulsifying salts (ES) (2%, wt/wt) were investigated as a function of different pH values (from 5.3 to approximately 5.9). The ES investigated were trisodium citrate (TSC), disodium phosphate (DSP), sodium hexametaphosphate (SHMP), and tetrasodium pyrophosphate (TSPP). Meltability and textural properties were determined using UW‐MeltProfiler and uniaxial compression, respectively. All PPC samples exhibited an increase in degree of flow (DOF) determined at 45 °C when the pH was increased from 5.3 to 5.6, presumably reflecting greater Ca binding by the ES, increased charge repulsion and therefore greater casein dispersion. When the pH of PPC was increased from 5.6 to approximately 5.9, 2 types of ES (DSP and SHMP) exhibited no further increase in DOF at 45 °C; while DOF increased in 1 type of PPC (made with TSC) but decreased in another (made with TSPP). TSPP is able to form crosslinks with casein especially in the vicinity of pH 6, which likely restricted melt; in contrast TSC does not crosslink caseins and the increase in pH helped cause greater casein dispersion. Low pH samples (5.3) were not significantly harder than higher pH samples for all ES types but exhibited fracture. The PPC with the highest hardness values at pHs 5.3 and 5.6 were made with TSPP and TSC, respectively. The pH‐dependent functional behavior of PPC was strongly influenced by the type of ES and its physicochemical properties including its ability to bind Ca, the possible creation of crosslinks with casein and casein dispersion during cooking.  相似文献   

7.
ABSTRACT:  This study evaluated the effect of pH on the microstructure of cream cheese and compared pH-induced changes in its microstructure with concomitant changes in cheese firmness and meltability. On 4 different days, experimental batches of cultured hot pack cream cheese were manufactured and analyzed for initial chemical composition. The cheeses were then sectioned into samples that were randomly assigned to 7 different treatment groups. Three groups were exposed to ammonia vapor for 1, 3, and 5 min to increase the pH; 3 groups were exposed to acetic acid vapor for 30, 60, and 90 min to decrease the pH; and 1 unexposed group served as the control. After equilibration at 4 °C, samples were analyzed for pH, firmness, meltability, and microstructure by scanning electron microscopy. The effects of experimental treatments on cheese pH, firmness, and meltability were analyzed by randomized complete block analysis of variance (ANOVA). Relationships between cheese pH and firmness and meltability were evaluated by regression. Experimental treatments significantly affected cheese pH, firmness, and meltability. Cheese firmness decreased and meltability increased with increasing pH from about pH 4.2 to 6.8. Cheese microstructure also changed dramatically over the same approximate pH range. Specifically, the volume of the protein network surrounding the fat droplets increased markedly with increasing pH, presumably due to casein swelling. These data support the hypothesis that protein-to-water interactions increased as the cheese pH increased, which gave rise to progressive swelling of the casein network, softer texture, and increased meltability.  相似文献   

8.
The objective of this study was to determine the effect of soy cheese (tofu) and trisodium citrate (TSC) concentration on physicochemical properties of pizza cheese. The results indicated that fat and FDM contents of pizza cheese increased significantly with increased proportion of TSC, while moisture and protein decreased but not significantly (P < 0.05). On the other hand, the fat, FDM, and protein content decreased with increased proportion of tofu, while moisture increased. The melting area and melting degree indicated that melting properties of pizza cheese decreased significantly, as the concentration of TSC increased. Furthermore, increase approximately 5 and 10% tofu in the blends with 0.5% TSC or 10% tofu in the blends with 1% TSC affected notable decrease in melting properties. Among each level of tofu, oiling off area showed significant increase with increasing TSC. Increase in tofu proportion as well as different TSC concentration resulted in decrease in free oil. The control cheese with 1% TSC (CC2C) had maximum oiling off, and with increase in tofu proportion there was a corresponding reduction (P < 0.05) in the oiling off area. It was observed that increase approximately 10% tofu in the blends with 0.5% TSC cause marked reduction in oiling off area by approximately 47%. There was rapid increase in oiling off area during the early stage of cooking. According to observation, free oil formation of cheese with 1% TSC (C2C) was higher than that of the cheese with 0.5% TSC (C1C), especially during 2.5 to 10 min (P > 0.05). Oiling off area of treatments decreased independently of trisodium citrate prolong cooking as the proportion of tofu increased.  相似文献   

9.
Mozzarella cheese was made from buffalo milk (6% fat) or from partially skimmed buffalo milk (2 and 4% fat) with 0.5 and 1% denatured whey protein. Adding whey protein to buffalo milk decreased rennet coagulation time and curd tension whereas increased curd synaeresis. Addition of whey protein to cheese milk increased the acidity, total solids, ash, salt, salt in moisture, also some nitrogen fractions. The meltability and oiling‐off values increased but the calcium values of mozzarella cheese decreased. The sensory properties of low fat mozzarella cheese were improved by addition of whey protein to the cheese milk.  相似文献   

10.
We have investigated the effects of adding a range of mineral salts and calcium-chelating agents on the distribution of casein and minerals between the non-pelleted and pelleted phases of milk obtained upon centrifugation at 78000 g for 90 min. Adding CaCl2 or mixtures of NaH2PO4 and Na2HPO4 to reconstituted skim milk (90 g milk solids/kg) at pH 6.65 increased both pelleted casein and pelleted calcium phosphate. Opposite effects were obtained by adding citrate or EDTA. The change in pelleted calcium phosphate was not simply related to casein release from the micelle. Upon adding 5 mmol EDTA/kg milk, 20% of the pelleted Ca, 22% of the pelleted phosphate and 5% of the micellar casein were removed. Increasing the concentration of EDTA to 10 mmol/kg milk decreased the pelleted Ca by 44% and the pelleted phosphate by 46%, and caused 30% of the micellar casein to be released. The effects of adding phosphate, citrate or EDTA at pH 6.65, followed by the addition of CaCl2, demonstrated the reversibility of the dissolution and formation of the micellar calcium phosphate. There were limits to this reversibility that were related to the amount of colloidal calcium phosphate removed from the casein micelles. Adding CaCl2 to milk containing > or = 20 mmol EDTA or > or = 30 mmol citrate/kg milk did not result in complete reformation of casein micelles. Light-scattering experiments confirmed that the dissolution of moderate amounts of colloidal calcium phosphate had little effect on micellar size and were reversible, while the dissolution of larger amounts of colloidal calcium phosphate resulted in large reductions in micellar size and was irreversible.  相似文献   

11.
In cheese, the concentration and form of residual Ca greatly influences texture. Two methods were used to determine the proportions of soluble (SOL) and insoluble (INSOL) Ca in Cheddar cheese during 4 mo of ripening. The first method was based on the acid-base buffering curves of cheese and the second was based on the extraction of the aqueous phase ("juice") of cheese under high pressure and determining the concentration of SOL Ca in the juice using atomic absorption spectroscopy. When cheese was acidified there was a strong buffering peak at pH approximately 4.8, which was due to the solubilization of residual colloidal calcium phosphate (CCP) of milk that remained in cheese as INSOL Ca phosphate. The area of this buffering peak in cheese was expressed as a percentage of the original area of this peak in milk and was used to estimate the concentration of residual INSOL Ca phosphate in cheese. There were no significant differences between the 2 methods. The proportions of INSOL Ca in cheese decreased from approximately 73 to approximately 58% between d 1 and 4 mo. These methods will be useful techniques to study the role of Ca in cheese texture and functionality.  相似文献   

12.
A novel model system was developed for studying the effects of colloidal Ca phosphate (CCP) concentration on the rheological properties of Cheddar cheese, independent of proteolysis and any gross compositional variation. Cheddar cheese slices (disks; diameter = 50 mm, thickness = 2 mm) were incubated in synthetic Cheddar cheese aqueous phase solutions for 6 h at 22°C. Control (unincubated) Cheddar cheese had a total Ca and CCP concentration of 2.80 g/100 g of protein and 1.84 g of Ca/100 g of protein, respectively. Increasing the concentration of Ca in the synthetic Cheddar cheese aqueous phase solution incrementally in the range from 1.39 to 8.34 g/L significantly increased the total Ca and CCP concentration of the cheese samples from 2.21 to 4.59 g/100 g of protein and from 1.36 to 2.36 g of Ca/100 g of protein, respectively. Values of storage modulus (index of stiffness) at 70°C increased significantly with increasing concentrations of CCP, but the opposite trend was apparent at 20°C. The maximum in loss tangent (index of meltability/flowability) decreased significantly with increasing concentration of CCP, and there was no significant effect on the temperature at which the maximum in loss tangent occurred (68 to 70°C). Fourier transform mechanical spectroscopy showed the frequency dependence of all of the cheese samples increased with increasing temperature; however, solubilization of CCP increased the frequency dependence of the cheese matrix only in the high temperature region (i.e., >35°C). These results support earlier studies that hypothesized that the concentration of CCP strongly modulates the rheological properties of cheese.  相似文献   

13.
以实验室自制Mozzarella奶酪为主要原料研究了的常温保存再制奶酪,经过切割、加热融化、UHT超高温瞬时灭菌等工艺,利用质构仪、扫描电镜等仪器分析水分添加量对常温保存再制奶酪品质的影响。结果表明:水分添加量对再制奶酪的融化性和溶胶系数均有显著增大的趋势(P<0.05);而对再制奶酪物性中的硬度、黏着性、咀嚼性有相似的减小的趋势;水分对酪蛋白的乳化作用的影响体现在溶胶系数和pH值的增大,以及脂肪球的分散和数量减少,在一定范围内水分增加对酪蛋白乳化作用越好。  相似文献   

14.
Cheese analogs were prepared from calcium caseinate, butter oil and emulsifying sodium salts (ES). Increasing ES levels gave cheese analogs with higher pH, degree of casein dissociation and degree of fat emulsification than the control without ES. Firmness of cheese analogs first increased, then decreased when the ES level was increased from 1 to 3%. Effects depended on the degree of polymerization of phosphate salts. Sodium citrate (>1%) or Na2HPO4 (>2%) made cheese analogs more able to melt upon reheating. Melting ability correlated with high pH, soft texture, high degree of casein dissociation and low degree of fat emulsification.  相似文献   

15.
The objective of this work was to examine the texture, viscosity, rheological properties and meltability of processed cheese analogues prepared using only acid casein (AC) or rennet casein (RC) at 11, 12 or 13% concentration, or using 10% AC or RC plus 1, 2 or 3% whey protein concentrate 80 or isolate. Hardness, adhesiveness and viscosity generally increased while meltability decreased with protein concentration. RC samples were harder but less cohesive than AC samples, and adding whey proteins to RC samples caused greater adhesiveness compared with AC samples. The temperature of decreasing loss tangent and the transition temperature differed between AC and RC samples. All AC samples but only 11% RC samples exhibited good meltability. These distinct properties observed in the current study may provide an approach to control textural/rheological properties and meltability by using the appropriate casein and whey preparations at the proper concentration.  相似文献   

16.
Cheddar cheese was made from milk concentrated by reverse osmosis (RO) to increase the lactose content or from whole milk. Manufacturing parameters (pH at coagulant addition, whey drainage, and milling) were altered to produce cheeses with different total Ca contents and low pH values (i.e., <5.0) during ripening. The concentration of insoluble (INSOL) Ca in cheese was measured by cheese juice method, buffering by acid-base titration, rheological properties by small amplitude oscillatory rheometry, and melting properties by UW-Melt Profiler. The INSOL Ca content as a percentage of total Ca in all cheeses rapidly decreased during the first week of aging but surprisingly did not decrease below approximately 41% even in cheeses with a very low pH (e.g., ∼4.7). Insoluble Ca content in cheese was positively correlated (r = 0.79) with cheese pH in both RO and nonRO treatments, reflecting the key role of pH and acid development in altering the extent of solubilization of INSOL Ca. The INSOL Ca content in cheese was positively correlated with the maximum loss tangent value from the rheology test and the degree of flow from the UW-Melt Profiler. When cheeses with pH <5.0 where heated in the rheometer the loss tangent values remained low (<0.5), which coincided with limited meltability of Cheddar cheeses. We believe that this lack of meltability was due to the dominant effects of reduced electrostatic repulsion between casein particles at low pH values (<5.0).  相似文献   

17.
A batch of full-fat (23% target fat) and 3 batches of low-fat (6% target fat) Iranian white cheese with different rennet concentrations (1-, 2-, and 3-fold the normal usage) were produced to study the effect of fat content reduction and promoted proteolysis on the textural and functional properties of the product. Cheese samples were analyzed with respect to their rheological parameters (uniaxial compression and small amplitude oscillatory shear), meltability, microstructure, and sensory characteristics. Reduction of fat content from 23 to 6% had adverse effects on the texture, functionality, cheese-making yield, and sensory characteristics of Iranian white cheese. Fat reduction increased the instrumental hardness parameters (storage modulus, stress at fracture, and Young's modulus of elasticity), decreased the cheese meltability and yield, and made the microstructure more compact. Doubling the rennet concentration reduced values of instrumental hardness parameters, increased the meltability, and improved the sensory impression of texture. Although increasing the rennet concentration to 2-fold the normal usage resembled somewhat the low-fat cheese to its full-fat counterpart, it appeared to cause more reduction in yield. Increasing the rennet concentration 3-fold the normal usage produced a product slightly more elastic than the low-fat cheese with normal concentration of rennet. Increasing the rennet concentration to 2-fold the normal usage was useful for improving the textural, functional, and sensory properties of low-fat Iranian white cheese.  相似文献   

18.
通过对切达奶酪p H、水分含量、产率、质构和融化性的测定,研究了低脂乳的不同热处理工艺对其品质的影响。结果表明:3个不同热处理工艺下乳清蛋白变性率分别为17.5%、35.1%和68.3%。随着热处理强度的增大,切达奶酪的p H和融化性下降,水分含量和产率提高,质构指标中的硬度、弹性、内聚性和咀嚼度下降,黏着性上升。利用扫描电镜和电泳技术分析不同热处理工艺对奶酪品质造成的差异。结果表明:随着热处理强度的增大,乳清蛋白变性率增大,形成的大分子聚合物被截留在奶酪的网状结构中,影响了酪蛋白的聚集,进而对其品质产成了影响。   相似文献   

19.
The objective of this study was to investigate the influence of several types of emulsifying salts (ES) on the texture of nonfat process cheese (NFPC). Improperly produced nonfat cheese tends to exhibit several problems upon baking including stickiness, insufficient or excessive melt, pale color upon cooling, formation of a dry skin (skinning) often leading to dark blistering, and chewy texture. These attributes are due to the strength and number of interactions between and among casein molecules. We propose to disrupt these interactions by using suitable emulsifying salts (ES). These ES chelate Ca and disperse caseins. Stirred curd cheese bases were made from skim milk using direct acidification with lactic acid to pH values 5.0, 5.2, and 5.4, and ripened for 1 d. Various levels of trisodium citrate (TSC; 0.5, 1, 1.5, 2, 2.5, 3, and 5%), disodium phosphate (DSP; 1, 2, 3, and 4%), or trisodium phosphate (TSP; 1, 2, 3, and 4%) were blended with the nonfat cheese base. Cheese, ES, and water were weighed into a steel container, which was placed in a waterbath at 98°C and then stirred using an overhead stirrer for 9 min. Molten cheese was poured into plastic containers, sealed, and stored at 4°C for 7 d before analysis. Texture and melting properties were determined using texture profile analysis and the UW-Melt-profiler. The pH 5.2 and 5.4 cheese bases were sticky during manufacture and had a pale straw-like color, whereas the pH 5.0 curd was white. Total calcium contents were approximately 400, 185, and 139 mg/100 g for pH 5.4, 5.2, and 5.0 cheeses, respectively. Addition of DSP resulted in NFPC with the lowest extent of flow, and crystal formation was apparent at DSP levels above 2%. The NFPC manufactured from the pH 5.0 base and using TSP had reduced melt and increased stickiness, whereas melt was significantly increased and stickiness was reduced in NFPC made with pH 5.4 base and TSP. However, for NFPC made from the pH 5.4 cheese and with 1% TSP, the pH value was >6.20 and crystals were observed within a few days. Use of TSC increased extent of flow up to a maximum with the addition of 2% ES for all 3 types of cheese bases. Addition of high levels of TSC to the pH 5.2 and 5.4 cheese bases resulted in increased stickiness. Similar pH trends for attributes such as extent of flow, hardness, and adhesiveness were observed for both phosphate ES but no consistent pH trends were observed for the NFPC made with TSC. These initial trials suggest that the pH 5.0 cheese base was promising for further research and scale-up to pilot-scale process cheese making, because cheeses had a creamy color, reasonable melt, and did not have high adhesiveness when TSC was used as the ES. However, the acid whey produced from the pH 5.0 curd could be a concern.  相似文献   

20.
The effect of heat treatments on the meltability of cheese was investigated. Cheddar cheeses of different composition and low-moisture, part-skim Mozzarella cheese were studied at 1, 3, 6, and 12 wk of aging. Cheese samples were heated to 60 degrees C and held for 0, 10, and 20 min before allowing the melted cheese to flow. Mean meltabilities, over all ages, of both Cheddar and Mozzarella cheeses decreased significantly as holding time increased. Meltability of young cheese was scarcely affected by the holding time, in sharp contrast to that of the old cheese where increasing the holding time greatly reduced meltability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号