首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The trend to poorer fertility in dairy cattle with rising genetic merit for production over the last decade suggests that breeding goals need to be broadened to include fertility. This requires reliable estimates of genetic (co)variances for fertility and other traits of economic importance. In the United Kingdom at present, reliable information on calving dates and hence calving intervals are available for most dairy cows. Data in this study consisted of 44,672 records from first lactation heifers on condition score, linear type score, and management traits in addition to 19,042 calving interval records. Animal model REML was used to estimate (co)variance components. Genetic correlations of body condition score (BCS) and angularity with calving interval were -0.40 and 0.47, respectively, thus cows that are thinner and more angular have longer calving intervals. Genetic correlations between calving interval and milk, fat, and protein yields were between 0.56 and 0.61. Records of phenotypic calving interval were regressed on sire breeding values for BCS estimated from records taken at different months of lactation and breeding values for BCS change. Genetic correlations inferred from these regressions showed that BCS recorded 1 mo after calving had the largest genetic correlation with calving interval in first lactation cows. It may be possible to combine information on calving interval, BCS, and angularity into an index to predict genetic merit for fertility.  相似文献   

2.
Twenty type classifiers scored body condition (BCS) of 91,738 first-parity cows from 601 sires and 5518 maternal grandsires. Fertility data during first lactation were extracted for 177,220 cows, of which 67,278 also had a BCS observation, and first-lactation 305-d milk, fat, and protein yields were added for 180,631 cows. Heritabilities and genetic correlations were estimated using a sire-maternal grandsire model. Heritability of BCS was 0.38. Heritabilities for fertility traits were low (0.01 to 0.07), but genetic standard deviations were substantial, 9 d for days to first service and calving interval, 0.25 for number of services, and 5% for first-service conception. Phenotypic correlations between fertility and yield or BCS were small (-0.15 to 0.20). Genetic correlations between yield and all fertility traits were unfavorable (0.37 to 0.74). Genetic correlations with BCS were between -0.4 and -0.6 for calving interval and days to first service. Random regression analysis (RR) showed that correlations changed with days in milk for BCS. Little agreement was found between variances and correlations from RR, and analysis including a single month (mo 1 to 10) of data for BCS, especially during early and late lactation. However, this was due to excluding data from the conventional analysis, rather than due to the polynomials used. RR and a conventional five-traits model where BCS in mo 1, 4, 7, and 10 was treated as a separate traits (plus yield or fertility) gave similar results. Thus a parsimonious random regression model gave more realistic estimates for the (co)variances than a series of bivariate analysis on subsets of the data for BCS. A higher genetic merit for yield has unfavorable effects on fertility, but the genetic correlation suggests that BCS (at some stages of lactation) might help to alleviate the unfavorable effect of selection for higher yield on fertility.  相似文献   

3.
Thin and fat cows are often credited for low fertility, but body condition score (BCS) has been traditionally treated as a linear trait when genetic correlations with reproductive performance have been estimated. The aims of this study were to assess genetic parameters for fertility, production, and body condition traits in the Brown Swiss population reared in the Alps (Bolzano-Bozen Province, Italy), and to investigate the possible nonlinearity among BCS and other traits by analyzing fat and thin cows. Records of BCS measured on a 5-point scale were preadjusted for year-season and days in milk at scoring, and were considered positive (1) for fat cows if they exceeded the value of 1 residual standard deviation or null (0) otherwise, whereas positive values for thin cows were imputed to records below −1 residual standard deviation. Fertility indicators measured on first- and second-parity cows were interval from parturition to first service, interval from first service to conception, interval from parturition to conception, number of inseminations to conception, conception at first service, and nonreturn rate at 56 d after first service. Production traits were peak milk yield, lactation milk yield, and lactation length. Data were from 1,413 herds and included 16,324 records of BCS, fertility, and production for first-parity, and 10,086 fertility records for second-parity cows. Animals calved from 2002 to 2007 and were progeny of 420 artificial insemination bulls. Genetic parameters for the aforementioned traits were obtained under univariate and bivariate threshold and censored linear sire models implemented in a Bayesian framework. Posterior means of heritabilities for BCS, fat cows, and thin cows were 0.141, 0.122, and 0.115, respectively. Genetic correlations of body condition traits with contemporary production were moderate to high and were between −0.556 and 0.623. Body condition score was moderately related to fertility in first (−0.280 to 0.497) and second (−0.392 to 0.248) lactation. The fat cow trait was scarcely related to fertility, particularly in first-parity cows (−0.203 to 0.281). Finally, the genetic relationships between thin cows and fertility were higher than those between BCS and fertility, both in first (−0.456 to 0.431) and second (−0.335 to 0.524) lactation. Body condition score can be considered a predictor of fertility, and it could be included in evaluation either as linear measure or as thin cow. In the second case, the genetic relationship with fertility was stronger, exacerbating the poorest body condition and considering the possible nonlinearity between fertility and energy reserves of the cow.  相似文献   

4.
The objective of this study was to investigate the genetic relationship between body condition score (BCS) and reproduction traits for first-parity Canadian Ayrshire and Holstein cows. Body condition scores were collected by field staff several times over the lactation in herds from Québec, and reproduction records (including both fertility and calving traits) were extracted from the official database used for the Canadian genetic evaluation of those herds. For each breed, six 2-trait animal models were run; they included random regressions that allowed the estimation of genetic correlations between BCS over the lactation and reproduction traits that are measured as a single lactation record. Analyses were undertaken on data from 108 Ayrshire herds and 342 Holstein herds. Average daily heritabilities of BCS were close to 0.13 for both breeds; these relatively low estimates might be explained by the high variability among herds and BCS evaluators. Genetic correlations between BCS and interval fertility traits (days from calving to first service, days from first service to conception, and days open) were negative and ranged between −0.77 and −0.58 for Ayrshire and between −0.31 and −0.03 for Holstein. Genetic correlations between BCS and 56-d nonreturn rate at first insemination were positive and moderate. The trends of these genetic correlations over the lactation suggest that a genetically low BCS in early lactation would increase the number of days that the primiparous cow was not pregnant and would decrease the chances of the primiparous cow to conceive at first service. Genetic correlations between BCS and calving traits were generally the strongest at calving and decreased with increasing days in milk. The correlation between BCS at calving and maternal calving ease was 0.21 for Holstein and 0.31 for Ayrshire and emphasized the relationship between fat cows around calving and dystocia. Genetic correlations between calving traits and BCS during the subsequent lactation were moderate and favorable, indicating that primiparous cows with a genetically high BCS over the lactation would have a greater chance of producing a calf that survived (maternal calf survival) and would transmit the genes that allowed the calf to be born more easily (maternal calving ease) and to survive (direct calving ease).  相似文献   

5.
The objectives of this study were to estimate the heritability of body condition score loss (BCSL) in early lactation and estimate genetic and phenotypic correlations among BCSL, body condition score (BCS), production, and reproductive performance. Body condition scores at calving and postpartum, mature equivalents for milk, fat and protein yield, days to first service, and services per conception were obtained from Dairy Records Management Systems in Raleigh, NC. Body condition score loss was defined as BCS at calving minus postpartum BCS. Heritabilities and correlations were estimated with a series of bivariate animal models with average-information REML. Herd-year-season effects and age at calving were included in all models. The length of the prior calving interval was included for all second lactation traits, and all nonproduction traits were analyzed with and without mature equivalent milk as a covariable. Initial correlations between BCS and BCSL were obtained using BCSL and BCS observations from the same cows. Additional genetic correlation estimates were generated through relationships between a group of cows with BCSL observations and a separate group of cows with BCS observations. Heritability estimates for BCSL ranged from 0.01 to 0.07. Genetic correlation estimates between BCSL and BCS at calving ranged from -0.15 to -0.26 in first lactation and from -0.11 to -0.48 in second lactation. Genetic correlation estimates between BCSL and postpartum BCS ranged from -0.70 to -0.99 in first lactation and from -0.56 to -0.91 in second lactation. Phenotypic correlation estimates between BCSL and BCS at calving were near 0.54, whereas phenotypic correlation estimates between BCSL and postpartum BCS were near -0.65. Genetic correlations between BCSL and yield traits ranged from 0.17 to 0.50. Genetic correlations between BCSL and days to first service ranged from 0.29 to 0.68. Selection for yield appears to increase BCSL by lowering postpartum BCS. More loss in BCS was associated with an increase in days to first service.  相似文献   

6.
Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields from 8725 multiparous Holstein-Friesian cows. A cubic random regression was sufficient to model the changing genetic variances for BCS, BW, and milk across different days in milk. The genetic correlations between BCS and fertility changed little over the lactation; genetic correlations between BCS and interval to first service and between BCS and pregnancy rate to first service varied from -0.47 to -0.31, and from 0.15 to 0.38, respectively. This suggests that maximum genetic gain in fertility from indirect selection on BCS should be based on measurements taken in midlactation when the genetic variance for BCS is largest. Selection for increased BW resulted in shorter intervals to first service, but more services and poorer pregnancy rates; genetic correlations between BW and pregnancy rate to first service varied from -0.52 to -0.45. Genetic selection for higher lactation milk yield alone through selection on increased milk yield in early lactation is likely to have a more deleterious effect on genetic merit for fertility than selection on higher milk yield in late lactation.  相似文献   

7.
Postpartum energy status is critically important to health and fertility, and it remains a major task to find suitable indicator traits for energy balance. Therefore, genetic parameters for daily energy balance (EB) and dry matter intake (DMI), weekly milk fat to protein ratio (FPR), and monthly body condition score (BCS) were estimated using random regression on data collected from 682 Holstein-Friesian primiparous cows recorded between lactation d 11 to 180. Average energy-corrected milk (ECM), EB, DMI, BCS, and FPR were 32.0 kg, 9.6 MJ of NEL, 20.3 kg, 2.95, and 1.12, respectively. Heritability estimates for EB, DMI, BCS, and FPR ranged from 0.03 to 0.13, 0.04 to 0.19, 0.34 to 0.59, and 0.20 to 0.54. Fat to protein ratio was a more valid measure for EB in early lactation than DMI, BCS, or single milk components. Correlations between FPR and EB were highest at the beginning of lactation [genetic correlation (rg) = −0.62 at days in milk (DIM) 15] and decreased toward zero. Dry matter intake was the trait most closely correlated with EB in mid lactation (rg = 0.73 at DIM 120 and 150). Energy balance in early lactation was negatively correlated to EB in mid lactation. The same applied to DMI. Genetic correlations between FPR across lactation stages were all positive; the lowest genetic correlation (0.55) was estimated between the beginning of lactation and early mid lactation. Hence, to improve EB at the beginning of lactation, EB and indicator traits need to be recorded in early lactation. We concluded that FPR is an adequate indicator for EB during the energy deficit phase. Genetic correlations of FPR with ECM, fat percentage, and protein percentage showed that a reduction of FPR in early lactation would have a slightly negative effect on ECM, whereas milk composition would change in a desirable manner.  相似文献   

8.
The objectives of this study were to estimate the heritability of body condition score (BCS) with data that could be used to generate genetic evaluations for BCS in the US, and to estimate the relationship among BCS, dairy form and selected type traits. Body condition score and linear type trait records were obtained from Holstein Association USA Inc. Because BCS was a new trait for classifiers, scoring distribution and accuracy was not normal. Records from 11 of 29 classifiers were eliminated to generate a data set that should represent BCS data recorded in the future. Edited data included 128,478 records for analysis of first lactation cows and 207,149 records for analysis of all cows. Heritabilities and correlations were estimated with ASREML using sire models. Models included age at calving nested within lactation, 5th order polynomials of DIM, fixed herd-classification visit effects and random sire and error. Genetic correlation estimates were generated between first lactation data that had records from 11 classifiers removed and data with no classifiers removed. Genetic correlation estimates were 0.995 and above between data with and without classifiers removed for scoring distributions, but heritability estimates were higher with the classifiers edited from the data. Heritability estimates for type traits and final score were similar to previously reported estimates. The heritability estimate for BCS was 0.19 for first lactation cows and 0.22 for all cows. The genetic correlation estimate for first lactation cows between BCS and dairy form was -0.73, whereas the genetic correlation estimate between BCS and strength was 0.72. Genetic correlation estimates were nearly identical when cows from all lactations were included in the analyses. Body condition score had a genetic correlation with final score closer to zero (0.08) than correlations of final score with dairy form, stature or strength.  相似文献   

9.
The aim of this study was to estimate genetic parameters for fertility traits and linear type traits in the Czech Holstein dairy cattle population. Phenotypic data regarding 12 linear type traits, measured in first lactation, and 3 fertility traits, measured in each of first and second lactation, were collected from 2005 to 2009 in the progeny testing program of the Czech-Moravian Breeders Corporation. The number of animals for each linear type trait was 59,467, except for locomotion, where 53,436 animals were recorded. The 3-generation pedigree file included 164,125 animals. (Co)variance components were estimated using AI-REML in a series of bivariate analyses, which were implemented via the DMU package. Fertility traits included days from calving to first service (CF1), days open (DO1), and days from first to last service (FL1) in first lactation, and days from calving to first service (CF2), days open (DO2), and days from first to last service (FL2) in second lactation. The number of animals with fertility data varied between traits and ranged from 18,915 to 58,686. All heritability estimates for reproduction traits were low, ranging from 0.02 to 0.04. Heritability estimates for linear type traits ranged from 0.03 for locomotion to 0.39 for stature. Estimated genetic correlations between fertility traits and linear type traits were generally neutral or positive, whereas genetic correlations between body condition score and CF1, DO1, FL1, CF2 and DO2 were mostly negative, with the greatest correlation between BCS and CF2 (−0.51). Genetic correlations with locomotion were greatest for CF1 and CF2 (−0.34 for both). Results of this study show that cows that are genetically extreme for angularity, stature, and body depth tend to perform poorly for fertility traits. At the same time, cows that are genetically predisposed for low body condition score or high locomotion score are generally inferior in fertility.  相似文献   

10.
The objective of this study was to investigate the genetic relationship between body condition score (BCS) and calving traits (including calving ease and calf survival) for Ayrshire second-parity cows in Canada. The use of random regression models allowed assessment of the change of genetic correlation from 100 d before calving to 335 d after calving. Therefore, the influence of BCS in the dry period on subsequent calving could be studied. Body condition scores were collected by field staff several times over the lactation in 101 herds from Québec and calving records were extracted from the official database used for Canadian genetic evaluation of calving ease. Daily heritability of BCS increased from 0.07 on d 100 before calving to 0.25 at 335 d in milk. Genetic correlations between BCS at different stages ranged between 0.59 and 0.99 and indicated that genetic components for BCS did not change much over lactation. With the exception of the genetic correlation between BCS and direct calving ease, which was low and negative, genetic correlations between BCS and calving traits were positive and moderate to high. Correlations were the highest before calving and decreased toward the end of the ensuing lactation. The correlation between BCS 10 d before calving and maternal calving ease was 0.32 and emphasized the relationship between fat cows before calving with dystocia. Standards errors of the genetic correlations estimates were low. Genetic correlations between BCS and calf survival were moderate to high and favorable. This indicates that cows with a genetically high BCS across lactation would have a greater chance of producing a calf that survived (maternal calf survival) and that they would transmit genes that allow the calf to survive (direct calf survival).  相似文献   

11.
Genetic (co)variances between body condition score (BCS), body weight (BW), milk production, and fertility-related traits were estimated. The data analyzed included 8591 multiparous Holstein-Friesian cows with records for BCS, BW, milk production, and/or fertility from 78 seasonal calving grass-based farms throughout southern Ireland. Of the cows included in the analysis, 4402 had repeated records across the 2 yr of the study. Genetic correlations between level of BCS at different stages of lactation and total lactation milk production were negative (-0.51 to -0.14). Genetic correlations between BW at different stages of lactation and total lactation milk production were all close to zero but became positive (0.01 to 0.39) after adjusting BW for differences in BCS. Body condition score at different stages of lactation correlated favorably with improved fertility; genetic correlations between BCS and pregnant 63 d after the start of breeding season ranged from 0.29 to 0.42. Both BW at different stages of lactation and milk production tended to exhibit negative genetic correlations with pregnant to first service and pregnant 63 d after the start of the breeding season and positive genetic correlations with number of services and the interval from first service to conception. Selection indexes investigated illustrate the possibility of continued selection for increased milk production without any deleterious effects on fertility or average BCS, albeit, genetic merit for milk production would increase at a slower rate.  相似文献   

12.
The objectives of this research were to estimate genetic parameters for body condition score (BCS) and locomotion (LOC), and to assess their relationships with angularity (ANG), milk yield, fat and protein content, and fat to protein content ratio (F:P) in the Italian Holstein Friesian breed. The Italian Holstein Friesian Cattle Breeders Association collects type trait data once on all registered first lactation cows. Body condition score and LOC were introduced in the conformation scoring system in 2007 and 2009, respectively. Variance (and covariance) components among traits were estimated with a Bayesian approach via a Gibbs sampling algorithm and an animal model. Heritability estimates were 0.114 and 0.049 for BCS and LOC, respectively. The genetic correlation between BCS and LOC was weak (−0.084) and not different from zero; therefore, the traits seem to be genetically independent, but further investigation on possible departures from linearity of this relationship is needed. Angularity was strongly negatively correlated with BCS (−0.612), and strongly positively correlated with LOC (0.650). The genetic relationship of milk yield with BCS was moderately negative (−0.386), and was moderately positive (0.238) with LOC. These results indicate that high-producing cows tend to be thinner and tend to have better locomotion than low-producing cows. The genetic correlation of BCS with fat content (0.094) and F:P (−0.014) was very weak and not different from zero, and with protein content (0.173) was weak but different from zero. Locomotion was weakly correlated with fat content (0.071), protein content (0.028), and F:P (0.074), and correlations were not different from zero. Phenotypic correlations were generally weaker than their genetic counterparts, ranging from −0.241 (BCS with ANG) to 0.245 (LOC with ANG). Before including BCS and LOC in the selection index of the Italian Holstein breed, the correlations with other traits currently used to improve type and functionality of animals need to be investigated.  相似文献   

13.
The objectives of this study were to characterize the changes of body condition score (BCS), energy content (EC), cumulative effective energy balance (CEEB), and blood serum concentrations of glucose, β-hydroxybutyrate (BHBA), and nonesterified fatty acids (NEFA) across the first lactation of Holstein cows, and to estimate variance components for these traits. Four hundred ninety-seven cows kept on a commercial farm in Greece that had calved during 2005 and 2006 were used. Body condition score, estimated live weight, and blood metabolic traits were recorded weekly for the first 3 mo of lactation and monthly thereafter until the end of lactation. Body condition score and estimated live weight records were used to calculate EC and CEEB throughout the first lactation. Estimates of fixed curves and genetic parameters for each trait, by week of lactation, were obtained with the use of random regression models. The estimated fixed curves were indicative of changes in the metabolic process and energy balance of the cows. Significant genetic variance existed in all studied traits, and was particularly high during the first weeks of lactation (except for the genetic variance of CEEB, which was not significant at the beginning of lactation). Significant heritability estimates for BCS ranged from 0.34 to 0.79, for EC from 0.19 to 0.87, for CEEB from 0.58 to 0.93, for serum glucose from 0.12 to 0.39, for BHBA from 0.08 to 0.40, and for NEFA from 0.08 to 0.35. Genetic correlations between different weeks of lactation were near unity for adjacent weeks and decreased for weeks further apart, becoming practically zero for measurements taken more than 3 to 4 mo apart, especially with regard to blood metabolic traits. Significant heritability estimates were also obtained for BCS recorded before first calving. Results suggest that genetic evaluation and selection of dairy cows for early-lactation body energy and blood metabolic traits is possible.  相似文献   

14.
Body condition score (BCS) records of primiparous Holstein cows were analyzed both as a single measure per animal and as repeated measures per sire of cow. The former resulted in a single, average, genetic evaluation for each sire, and the latter resulted in separate genetic evaluations per day of lactation. Repeated measure analysis yielded genetic correlations of less than unity between days of lactation, suggesting that BCS may not be the same trait across lactation. Differences between daily genetic evaluations on d 10 or 30 and subsequent daily evaluations were used to assess BCS change at different stages of lactation. Genetic evaluations for BCS level or change were used to estimate genetic correlations between BCS measures and fertility traits in order to assess the capacity of BCS to predict fertility. Genetic correlation estimates with calving interval and non-return rate were consistently higher for daily BCS than single measure BCS evaluations, but results were not always statistically different. Genetic correlations between BCS change and fertility traits were not significantly different from zero. The product of the accuracy of BCS evaluations with their genetic correlation with the UK fertility index, comprising calving interval and non-return rate, was consistently higher for daily than for single BCS evaluations, by 28 to 53%. This product is associated with the conceptual correlated response in fertility from BCS selection and was highest for early (d 10 to 75) evaluations.  相似文献   

15.
The objectives of this study were to estimate heritability for daily body weight (BW) and genetic correlations of daily BW with daily milk yield (MY), body condition score (BCS), dry matter intake, fat yield, and protein yield. The Afiweigh cow body weighing system records BW of every cow exiting the milking parlor. The Afiweigh system was installed at the Pennsylvania State University dairy herd in August 2001 and in July 2004 at the Virginia Tech dairy herd. The edited data included 202,143 daily BW and 290,930 daily MY observations from 575 Pennsylvania State University and 120 Virginia Tech Holstein cows. Data were initially analyzed with a series of 4-trait animal models, followed by random regression models. The models included fixed effects for age within lactation group, week of lactation, and herd-date. Random effects included animal, permanent environment, and error. The order of the polynomials for random animal and permanent environmental effects with the random regression model for daily BW was 4 and 6, respectively. Heritability estimates for daily BW ranged from 0.48 to 0.57 and were largest between 200 and 230 and smallest at 305 d of lactation. Genetic correlations were large between BW and BCS (0.60). The genetic correlation between daily BW and MY was −0.14 but was positive (0.24) after adjusting for BCS. Electronically recorded daily BW is highly heritable, and genetic evaluations of daily BW and BW change across the lactation could be used to select for less early lactation BW loss.  相似文献   

16.
Goat milk somatic cell counts have been collected for several years in France by the national milk recording organization. Information is used for health management, because repeatedly elevated somatic cell counts are a good indirect predictor of intramammary infection. Genetic parameters were estimated for 67,882 and 49,709 primiparous goats of the dairy Alpine and Saanen breeds, respectively, with complete information for milk somatic cell counts and milk production traits. About 40% of the goats had additional information for 11 udder type traits scored by official classifiers of the breeders’ association CAPGENES. Estimates were obtained by REML with an animal model. The studied trait was lactation somatic cell score (LSCS), the weighted mean of somatic cell score (log-transformed SCC) adjusted for lactation stage. Heritability of LSCS was 0.20 and 0.24 in the Alpine and Saanen breeds, respectively. Relationships with milk production and udder type traits were additionally estimated by using multitrait analyses. Heritability estimates in first lactation ranged from 0.30 to 0.35 for lactation milk, fat, and protein yields; from 0.60 to 0.67 for fat and protein contents; and from 0.22 to 0.50 for udder type traits. Genetic correlations of somatic cell score with milk production traits were generally low, ranging from −0.13 to 0.12. Slightly more negative correlations were estimated for fat content: −0.18 and −0.20 in Saanen and Alpine breeds, respectively. Lactation somatic cell score was genetically correlated with udder floor position (rg = −0.24 and −0.19 in the Alpine and Saanen breeds, respectively), and, in Saanen, teat length, teat width, and teat form (rg = 0.29, 0.34 and −0.27, respectively). These results suggest that a reduction in somatic cell count can be achieved by selection while still improving milk production and udder type and teat traits.  相似文献   

17.
The aim of this project was to investigate the relationship of milk urea nitrogen (MUN) with 3 milk production traits [milk yield (MY), fat yield (FY), protein yield (PY)] and 6 fertility measures (number of inseminations, calving interval, interval from calving to first insemination, interval from calving to last insemination, interval from first to last insemination, and pregnancy at first insemination). Data consisted of 635,289 test-day records of MY, FY, PY, and MUN on 76,959 first-lactation Swedish Holstein cows calving from 2001 to 2003, and corresponding lactation records for the fertility traits. Yields and MUN were analyzed with a random regression model followed by a multi-trait model in which the lactation was broken into 10 monthly periods. Heritability for MUN was stable across lactation (between 0.16 and 0.18), whereas MY, FY, and PY had low heritability at the beginning of lactation, which increased with time and stabilized after 100 d in milk, at 0.47, 0.36, and 0.44, respectively. Fertility traits had low heritabilities (0.02 to 0.05). Phenotypic correlations of MUN and milk production traits were between 0.13 (beginning of lactation) and 0.00 (end of lactation). Genetic correlations of MUN and MY, FY, and PY followed similar trends and were positive (0.22) at the beginning and negative (−0.15) at the end of lactation. Phenotypic correlations of MUN and fertility were close to zero. A surprising result was that genetic correlations of MUN and fertility traits suggest a positive relationship between the 2 traits for most of the lactation, indicating that animals with breeding values for increased MUN also had breeding values for improved fertility. This result was obtained with a random regression model as well as with a multi-trait model. The analyzed group of cows had a moderate level of MUN concentration. In such a population MUN concentration may increase slightly due to selection for improved fertility. Conversely, selection for increased MUN concentration may improve fertility slightly.  相似文献   

18.
Genetic correlations among milk, fat, and protein yields; body size composite (BSC); udder composite (UDC); and productive life (PL) in Holsteins were investigated over time. The data set contained 25,280 records of cows born in Wisconsin between 1979 and 1993. The multiple trait random regression (MT-RR) animal model included registration status, herd-year, age group, and stage of lactation as fixed effects; additive genetic effects with random regressions (RR) on year of birth using the first-order Legendre polynomial; and residual effects. Heterogeneous residual variances were considered in the model. Estimates of variance components and genetic correlations among traits from MT-RR were compared with those estimated with a multiple trait interval (MT-I) model, which assumed that every 3-yr interval was a separate trait and included the same effects as in the MT-RR model except for the RR. Genetic correlations estimated with MT-RR and MT-I models over time among all traits were compared with correlations among breeding values predicted with the single trait (ST) model without RR. Correlations among breeding values predicted with MT-RR, ST, and MT models were also calculated. Additive genetic and residual variances for all traits except PL increased over time; those for PL were constant. As a result, heritability estimates had no significant changes during the 15 yr. Genetic correlations of PL with milk, fat, protein, and BSC declined to zero or negative; those with UDC remained positive. Correlations among breeding values predicted with ST, MT, and MT-RR models were relatively high for all traits except PL. Genetic correlations between PL and other traits varied over time, with some correlations changing sign. For accurate indirect prediction of PL from other traits, the genetic correlations among the traits need to be re-estimated periodically.  相似文献   

19.
The objective of this research was to estimate heritabilities of milk urea nitrogen (MUN) and lactose in the first 3 parities and their genetic relationships with milk, fat, protein, and SCS in Canadian Holsteins. Data were a random sample of complete herds (60,645 test day records of 5,022 cows from 91 herds) extracted from the edited data set, which included 892,039 test-day records of 144,622 Holstein cows from 4,570 herds. A test-day animal model with multiple-trait random regression and the Gibbs sampling method were used for parameter estimation. Regression curves were modeled using Legendre polynomials of order 4. A total of 6 separate 4-trait analyses, which included MUN, lactose, or both (yield or percentage) with different combinations of production traits (milk, fat and protein yield, fat and protein percentages, and somatic cell score) were performed. Average daily heritabilities were moderately high for MUN (from 0.384 to 0.414), lactose kilograms (from 0.466 to 0.539), and lactose percentage (from 0.478 to 0.508). Lactose yield was highly correlated with milk yield (0.979). Lactose percentage and MUN were not genetically correlated with milk yield. However, lactose percentage was significantly correlated with somatic cell score (−0.202). The MUN was correlated with fat (0.425) and protein percentages (0.20). Genetic correlations among parities were high for MUN, lactose percentage, and yield. Estimated breeding values (EBV) of bulls for MUN were correlated with fat percentage EBV (0.287) and EBV of lactose percentage were correlated with lactation persistency EBV (0.329). Correlations between lactose percentage and MUN with fertility traits were close to zero, thus diminishing the potential of using those traits as possible indicators of fertility.  相似文献   

20.
The objective of this research was to estimate the genetic correlations between milk mid-infrared-predicted fatty acid groups and production traits in first-parity Canadian Holsteins. Contents of short-chain, medium-chain, long-chain, saturated, and unsaturated fatty acid groupings in milk samples can be predicted using mid-infrared spectral data for cows enrolled in milk recording programs. Predicted fatty acid group contents were obtained for 49,127 test-day milk samples from 10,029 first-parity Holstein cows in 810 herds. Milk yield, fat and protein yield, fat and protein percentage, fat-to-protein ratio, and somatic cell score were also available for these test days. Genetic parameters were estimated for the fatty acid groups and production traits using multiple-trait random regression test day models by Bayesian methods via Gibbs sampling. Three separate 8- or 9-trait analyses were performed, including the 5 fatty acid groups with different combinations of the production traits. Posterior standard deviations ranged from <0.001 to 0.01. Average daily genetic correlations were negative and similar to each other for the fatty acid groups with milk yield (?0.62 to ?0.59) and with protein yield (?0.32 to ?0.25). Weak and positive average daily genetic correlations were found between somatic cell score and the fatty acid groups (from 0.25 to 0.36). Stronger genetic correlations with fat yield, fat and protein percentage, and fat-to-protein ratio were found with medium-chain and saturated fatty acid groups compared with those with long-chain and unsaturated fatty acid groups. Genetic correlations were very strong between the fatty acid groups and fat percentage, ranging between 0.88 for unsaturated and 0.99 for saturated fatty acids. Daily genetic correlations from 5 to 305 d in milk with milk, protein yield and percentage, and somatic cell score traits showed similar patterns for all fatty acid groups. The daily genetic correlations with fat yield at the beginning of lactation were decreasing for long-chain and unsaturated fatty acid groups and increasing for short-chain fatty acids. Genetic correlations between fat percentage and fatty acids were increasing at the beginning of lactation for short- and medium-chain and saturated fatty acids, but slightly decreasing for long-chain and unsaturated fatty acid groups. These results can be used in defining fatty acid traits and breeding objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号