首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of nutty flavor in cheddar cheese   总被引:4,自引:0,他引:4  
  相似文献   

2.
Yeasts are commonly detected in cheese. Two yeast species, Kluyveromyces lactis and Pichia fermentans, were isolated at high populations from raw-milk Cantal cheese, a French Protected Denomination of Origin hard cheese. To investigate the interest of these 2 species as adjunct cultures to promote flavor development of Cantalet cheese, they were added at 105 cfu/mL to microfiltered milk. The global microbiological, biochemical, and flavor changes induced by the presence of the yeasts in cheese were determined. Adjunct yeasts were present at 106 cfu/g in curd, declined to 104 to 105 cfu/g in cheese, and did not influence gross composition, content of free amino acids, or content of free fatty acids. By using 8-way gas chromatography-olfactometry in parallel with gas chromatography-mass spectrometry, 30 odorous compounds of Cantalet cheese were identified. The olfactory profiles of K. lactis cheeses contained significantly greater levels of 8 odorous compounds (ethanol, ethyl hexanoate, 4 aldehydes, and 2 branched-chain acids) compared with the control and P. fermentans cheeses. Sensory analysis of cheeses flavor discriminated K. lactis cheeses on only 2 attributes (acetaldehyde and alcohol odors). This study shows that yeast contribution is species-specific and that K. lactis, at a population of 106 viable cells/g, can influence Cantalet cheese flavor.  相似文献   

3.
为了筛选能够促进Cheddar干酪成熟,从泡菜、腐乳及不同产地的Cheddar中筛选具有高肽酶活力和自溶度的乳杆菌作为Ched-dar干酪附属发酵剂,并应用于Cheddar干酪的制作中.结果表明,从美国Cheddar干酪中筛选出1株Lactobacillus plantarum OD具有较高的肽酶活力和自溶度,运用于Cheddar千酪的制作中能显著提高其游离氨基酸浓度,改善其风味,有利于加快干酪的成熟.  相似文献   

4.
Bacteriophage infection is still a persistent problem in large dairy processes despite extensive studies over the last decades. Consequently, new methods are constantly sought to prevent phage infection. In this paper, we show that phage neutralizing heavy-chain antibody fragments, obtained from Camelidae and produced at a large scale in the generally regarded as safe microorganism Saccharomyces cerevisiae, can effectively be used to impede phage induced lysis during a cheese process. The growth inhibition of the cheese starter culture by 10(5) pfu/ml cheese-milk of the small isometric-headed 936-type phage p2 was prevented by the addition of only 0.1 microg/ml (7 nM) of the neutralizing antibody fragment. The use of such antibody fragments in cheese manufacturing are a realistic and interesting option because of the small amount of antibody fragments that are needed. Moreover the antibodies are produced in a food grade microorganism and can easily be isolated from the fermentation liquid in a pure and DNA free form.  相似文献   

5.
干酪成熟时间较长且费用较高,干酪促熟成为降低生产成本的有效途径之一。干酪促熟常用的方法有酶法、修饰发酵剂细胞、提高成熟温度、高压处理等,但均存在一定的不足,限制了其在干酪工业中的应用。非发酵剂乳酸菌可促进干酪风味的形成并加速成熟.已成为干酪促熟方法的研究热点之一。介绍了干酪生产及成熟过程中微生物的作用,特别介绍了干酪附属发酵剂发展的原由并综述了其在干酪成熟过程中研究进展。  相似文献   

6.
The interactions of the 936-species phages sk1, jj50, and 64 with the cell surface of Lactococcus lactis LM0230 were analyzed. Cell envelopes (walls + plasma membrane), cell wall, or plasma membrane from L. lactis ssp. lactis LM0230 each inactivated the phages in vitro. However, other 936-species phages kh and P008, which do not infect strain LM0230, were not inactivated by any of the subcellular fractions. Treating cell walls or plasma membrane with the cell wall hydrolase mutanolysin eliminated inactivation of phage sk1. This suggested that intact cell wall fragments were required for inactivation. A role for plasma membrane in phage sk1 inactivation was further investigated. Boiling, washing in 2 M KCl, 8 M urea, or 0.1 M Na(2)CO(3)/pH 11, or treating the plasma membrane with proteases did not reduce adsorption or inactivation of phage. Adding lipoteichoic acid or antibodies to lipoteichoic acid did not reduce inactivation of phage in a mixture with membrane, suggesting that lipoteichoic acid was not involved. Inactivation by envelopes or cell wall correlated with ejection of DNA from the phage sk1 capsid. Although calcium is required for plaque formation, it was not required for adsorption, inactivation, or ejection of phage DNA by envelopes or cell wall. The results suggest that at least for phages sk1, jj50, and 64, adsorption and phage DNA injection into the host does not require a host membrane protein or lipoteichoic acid, and that cell wall components are sufficient for these initial steps of phage infection.  相似文献   

7.
The poor survival of probiotic bacteria in commercial yogurts may limit their potential to exert health benefits in humans. The objective was to improve the survival of bifidobacteria in fermented milk. Cocultivation with some strains of Lactococcus lactis ssp. lactis improved the survival of bifidobacteria in fermented milk during refrigerated storage. Studies on one strain, Lc. lactis ssp. lactis MCC866, showed that the concentrations of dissolved oxygen were kept lower in the cocultivated fermented milk during storage compared with monocultured Bifidobacterium longum BB536 or samples cocultured with another noneffective Lc. lactis ssp. lactis strain. Degradation of genomic DNA was suppressed in the cocultivating system with Lc. lactis ssp. lactis MCC866. Several genes that participated in protection from active oxygen species (e.g., genes coding for alkyl hydroperoxide reductase and Fe2+ transport system) were expressed at higher levels during refrigerated storage in Lc. lactis ssp. lactis MCC 866 compared with another noneffective Lc. lactis ssp. lactis strain. Concentration of free iron ion was also lower in supernatants of fermented milk cocultivated with B. longum BB536 and Lc. lactis ssp. lactis MCC866. These results suggest that Lc. lactis ssp. lactis MCC 866 is potentially superior in reducing oxygen damage and consequently improves the survival of bifidobacteria in the cocultivating system. This cocultivation system is of industrial interest for producing fermented milk containing viable bifidobacteria with long shelf life.  相似文献   

8.
The aim of this work was to study, under model conditions, combined effects of the concentration of lactose (0-1% w/v), NaCl (0-2% w/v) and aero/anaerobiosis on the growth and tyramine production in 3 strains of Lactococcus lactis subsp. lactis and 2 strains of L. lactis subsp. cremoris. The levels of the factors tested were chosen with respect to the conditions which can occur during the real process of natural cheese production, including the culture temperature (10 ± 1 °C). In all strains tested, tyrosine decarboxylation was most influenced by NaCl concentration; the highest production of tyramine was obtained within the culture with the highest (2% w/v) salt concentration applied. Two of the strains L. lactis subsp. lactis produced tyramine only in broth with the highest NaCl concentration tested. In the remaining 3 strains of L. lactis, tyramine was detected under all conditions applied. The tested concentration of lactose and aero/anaerobiosis had a less significant effect on tyramine decarboxylation. However, it was also found that at the same concentrations of NaCl and lactose, a higher amount of tyramine was detected under anaerobic conditions. In all strains tested, tyramine decarboxylation started during the active growth phase of the cells.  相似文献   

9.
10.
11.
12.
13.
Restriction fragment length polymorphism (RFLP) is used to differentiate microorganisms by analysis of their DNA restriction patterns. A modified RFLP procedure is proposed for the rapid characterization of Lactococcus lactis strains producing exopolysaccharides (EPS). The availability of such effective cataloging system is likely to benefit research aimed at identifying lactococcal strains that produce novel EPS.  相似文献   

14.
Heterologous production of the antilisterial bacteriocin pediocin PA-1 in lactococci is an attractive objective to increase the safety of dairy products. In a previous paper, we developed a system for the heterologous production of the bacteriocin pediocin PA-1 in pediocin-resistant lactococcal hosts through a leader exchange strategy. The system was based on 3 genes, 1 encoding the fusion between the lactococcin A leader and propediocin PA-1, and the other 2 encoding the lactococcin A secretion machinery. In this study, we investigated whether the addition of the pediocin PA-1 immunity gene (pedB) to this system has any effect on pediocin production. Introduction of the plasmid(s) carrying the genes described above into nisinproducing and non-nisinproducing lactococcal hosts led to a significant increase in the production of pediocin compared with the equivalent pedB-devoid systems. In addition, we obtained a nisin-producing strain with the ability to secrete pediocin PA-1 at a level equivalent to that of the parental strain Pediococcus acidilactici 347, which represents a notable improvement over our previous systems.  相似文献   

15.
This study investigated population dynamics of starter, adjunct, and nonstarter lactic acid bacteria (NSLAB) in reduced-fat Cheddar and Colby cheese made with or without a Lactobacillus casei adjunct. Duplicate vats of cheese were manufactured and ripened at 7 degrees C. Bacterial populations were monitored periodically by plate counts and by DNA fingerprinting of cheese isolates with the random amplified polymorphic DNA technique. Isolates that displayed a unique DNA fingerprint were identified to the species level by partial nucleotide sequence analysis of the 16S rRNA gene. Nonstarter biota in both cheese types changed over time, but populations in the Colby cheese showed a greater degree of species heterogeneity. The addition of the L. casei adjunct to cheese milk at 10(4) cfu/ml did not completely suppress "wild" NSLAB populations, but it did appear to reduce nonstarter species and strain diversity in Colby and young Cheddar cheese. Nonetheless, nonstarter populations in all 6-mo-old cheeses were dominated by wild L. casei. Interestingly, the dominant strains of L. casei in each 6-mo-old cheese appeared to be affected more by adjunct treatment and not cheese variety.  相似文献   

16.
Several wild lactococcal strains were tested for their ability to produce aroma compounds during growth in milk. Strains were incubated alone and in combination with Lactococcus lactis IFPL730, which is characterized by showing α-keto acid decarboxylase activity. Volatile compounds from incubated milks were analyzed by means of solid-phase microextraction (SPME) and evaluated by gas chromatography–mass spectrometry (GC–MS). Incubated milks were also sniffed for sensory analysis to describe aroma attributes. The combination of L. lactis IFPL326 that showed the highest branched chain aminotransferase activity with IFPL730 contributed to the highest formation of leucine-derived volatile compounds, such as 3-methylbutanal, 3-methyl-1-butanol and 2-hydroxy-4-methyl pentanoic acid methyl ester. In addition, the milk incubated with this combination of strains was awarded, by the test panellists, the highest scores for “ripened cheese” attribute and aroma intensity. The results indicate that combination of L. lactis strains harbouring complementary catabolic routes can contribute to improved cheese aroma formation, the combined cultures with L. lactis IFPL730 resulting in higher volatile compound formation than isolate strains.  相似文献   

17.
Angiotensin I-converting enzyme inhibitory (ACEI) activity was evaluated and compared in <3 KDa water-soluble extracts (WSE) isolated from milk fermented by wild and commercial starter culture Lactococcus lactis strains after 48 h of incubation. The highest ACEI activities were found in WSE from milk inoculated with wild L. lactis strains isolated from artisanal dairy products and commercial starter cultures. On the other hand, the lowest ACEI activities were found in WSE from milk inoculated with wild strains isolated from vegetables. Moreover, the IC50 values (concentration that inhibits 50% activity) of WSE from artisanal dairy products were the lowest, indicating that these fractions were the most effective in inhibiting 50% of ACE activity. In fact, a strain isolated from artisanal cheese presented the lowest IC50 (13 μg/mL). Thus, it appears that wild L. lactis strains isolated from artisanal dairy products and commercial starter cultures showed good potential for the production of fermented dairy products with ACEI properties.  相似文献   

18.
3-Methylbutanal is one of the primary substances that contribute to the nutty flavor in cheese. Lactococcus strains have been shown to have higher aminotransferase and α-keto acid decarboxylase activities compared with other microbes, indicating that they might form a higher amount of 3-methylbutanal by decarboxylation. Several dairy lactococcal strains have been successfully applied as adjunct cultures to increase the 3-methylbutanal content of cheese. Moreover, compared with dairy cultures, the nondairy lactococci are generally metabolically more diverse with more active AA-converting enzymes. Therefore, it might be appropriate to use nondairy lactococcal strains as adjunct cultures to enrich the 3-methylbutanal content of cheese. This study thereby aimed to select a nondairy Lactococcus strain that is highly productive of 3-methylbutanal, identify its biosynthetic pathway, and apply it to cheese manufacture. Twenty wild nondairy lactococci isolated from 5 kinds of Chinese traditional fermented products were identified using 16S rRNA sequence analysis and were found to belong to Lactococcus lactis ssp. lactis. The nondairy strains were then screened in vitro for their production of 3-methylbutanal and whether they met the criteria to become an adjunct culture for cheese. The L. lactis ssp. lactis F9, isolated from sour bamboo shoot, was selected because of its higher 3-methylbutanal production, suitable autolysis rate, and lower acid production. The enzymes involved in the catabolic pathway of leucine were then evaluated. Both α-keto acid decarboxylase (6.96 μmol/g per minute) and α-keto acid dehydrogenase (30.06 μmol/g per minute) activities were detected in nondairy L. lactis F9. Cheddar cheeses made with different F9 levels were ripened at 13°C and analyzed after 90 d by a combination of instrumental and sensory methods. The results showed that adding nondairy L. lactis F9 significantly increased 3-methylbutanal content and enhanced the nutty flavor of the cheese without impairing its textural properties. Thus, nondairy L. lactis F9 efficiently enhanced the biosynthesis of 3-methylbutanal in vitro and in manufactured cheese.  相似文献   

19.
The objectives were to reduce bitterness in reduced-fat Cheddar cheese made with an exopolysaccharide (EPS)-producing culture and study relationships among ultra-filtration (UF), residual chymosin activity (RCA), and cheese bitterness. In previous studies, EPS-producing cultures improved the textural, melting, and viscoelastic properties of reduced-fat Cheddar cheese. However, the EPS-positive cheese developed bitterness after 2 to 3 mo of ripening due to increased RCA. We hypothesized that the reduced amount of chymosin needed to coagulate UF milk might result in reduced RCA and bitterness in cheese. Reduced-fat Cheddar cheeses were manufactured with EPS-producing and nonproducing cultures using skim milk or UF milk (1.2×) adjusted to a casein:fat ratio of 1.35. The EPS-producing culture increased moisture and RCA in reduced-fat Cheddar cheese. Lower RCA was found in cheese made from UF milk compared with that in cheese made from control milk. Ultrafiltration at a low concentration rate (1.2×) produced EPS-positive, reduced-fat cheese with similar RCA to that in the EPS-negative cheese. Slower proteolysis was observed in UF cheeses compared with non-UF cheeses. Panelists reported that UF EPS-positive cheese was less bitter than EPS-positive cheese made from control milk. This study showed that UF at a low concentration factor (1.2×) could successfully reduce bitterness in cheese containing a high moisture level. Because this technology reduced the RCA level (per g of protein) to a level similar to that in the control cheeses, the contribution of chymosin to cheese proteolysis would be similar in both cheeses.  相似文献   

20.
Hispánico cheese was manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639, bacteriocin-nonproducing L. lactis ssp. lactis INIA 437, or a combination of both strains, as starter cultures. Lactobacillus helveticus LH 92, a culture of high amino-peptidase activity sensitive to lacticin 481, was added to all vats. Milk inoculation with the bacteriocin producer promoted early lysis of Lb. helveticus cells in cheese. Cell-free aminopeptidase activity in cheese made with the 3 lactic cultures was 1.8 times the level reached in cheese made only with L. lactis strain INIA 437 and Lb. helveticus, after 15 d of ripening. Proteolysis (as estimated by the o-phthaldialdehyde method) in cheese made with the 3 lactic cultures was twice as high, and the level of total free amino acids 2.4 times the level found in cheese made only with L. lactis strain INIA 437 and Lb. helveticus, after 25 d of ripening. Hydrophobic and hydrophilic peptides and their ratio were at the lowest levels in cheese made with the 3 lactic cultures, which received the lowest scores for bitterness and the highest scores for taste quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号