首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dairy farm activities contribute to environmental pollution through the surplus N and P that they produce. Optimization of animal feeding and management has been described as a key strategy for decreasing N and P excretion in manure. Sixty-four commercial dairy farms were studied to assess the efficiency of N and P use in lactating herds and to identify dietary and management factors that may contribute to improving the efficiency of nutrient use for milk production, and decrease N and P excretion. The average ration was formulated to 50:50 forage:concentrate ratio with grass silage and corn silage as the main forage sources. Mean N and P intakes were 562 g/d [16.4% crude protein (CP)] and 84.8 g/d (0.40% P), respectively. Milk yield averaged 29.7 kg/d and contributed to 25.8% (standard deviation ± 2.9) of N utilization efficiency (NUE) and 31.9% (standard deviation ± 4.5) of P utilization efficiency (PUE). Dietary N manipulation through fitting the intake of CP to animal requirements showed a better response in terms of decreasing N excretion (R2 = 0.70) than that estimated for P nutrition and excretion (R2 = 0.30). Improvement in NUE helped increase PUE, despite the widespread use of feedstuffs with a high P content. Management strategies for lactating herds, such as the use of different feeding groups, periodical ration reformulation, and selection of feeding system did not show any consistent response in terms of improved NUE and PUE. The optimization of NUE and PUE contributed to decreasing the N and P excretion per unit of milk produced, and therefore, reductions in N and P excretion of between 17 and 35%, respectively, were estimated. Nevertheless, nutritional and herd management strategies were limited when N and P excretion were considered in relation to the whole lactating herd and farmland availability. Dietary CP manipulation was estimated to decrease herd N excretion by 11% per hectare, whereas dietary P manipulation would be decreased by no more than 17%. We conclude that the correct match between the ingested and required N and P, together with an increase in milk productivity, may be feasible strategies for decreasing N and P excretion by lactating herds on commercial farms.  相似文献   

2.
A large data set derived from total diet digestibility assessments on lactating dairy cows (535 Holstein-Friesian and 29 Norwegian) was used to examine effects of dietary and animal factors on manure (feces and urine) nitrogen (N) output and to develop mitigation strategies and prediction equations for manure N output in lactating dairy cows. Manure N output was positively and significantly related to live weight, milk yield, dietary crude protein (CP) concentration, dry matter intake, and N intake. Reducing the dietary CP concentration or increasing the milk yield decreased manure N output per kilogram of milk yield. Prediction equations for manure N output using live weight and milk yield, either alone or combined, had relatively low R2 (0.227 to 0.474) and large standard error (70.6 to 85.6) values. Addition of dietary CP concentration to these relationships considerably increased R2 to 0.754 and reduced the standard error to 48.2. Relating manure N output to N intake produced a very high r2 (0.901) and a very low standard error (30.6). The addition of live weight and milk yield to this relationship as supporting predictors only marginally increased R2 to 0.910 and reduced the standard error to 29.3. The internal validation of these equations revealed that use of N intake as the primary predictor produced a very accurate prediction of manure N output. In situations in which data on N intake are not available, prediction equations based on dietary CP concentration, live weight, and milk yield together can produce a relatively accurate assessment of manure N output.  相似文献   

3.
Monitoring or accurately predicting manure quantities and nutrient concentrations is important for dairy farms facing strict environmental regulations. The objectives of this project were to determine the daily out-flow of manure nutrients from a free-stall barn using mass balance and to compare results with published excretion models. The project was conducted at the free-stall facility housing the lactating cow herd of the Virginia Tech Dairy Center in 2005. The herd consisted of 142 (±8.9) Holstein and Jersey cows with a mean body weight of 568 (±6.2) kg and average milk yield of 29.8 (±1.7) kg/d with 3.18% (±0.07) true protein and 3.81% (±0.13) milk fat on 18 sampling days. The intakes of dry matter (DM), N, and P were estimated from the formulated ration. Daily consumption averaged 21.7 (±0.27) kg of DM with 17.7% (±0.26) crude protein and 0.46% (±0.03) P. Approximately 110 (± 27.9) kg/d of sawdust was used as bedding; its contribution to manure flow was subtracted. The alleys in the free-stall barn were flushed every 6 h with recycled wastewater, and the slurry was collected. On 18 sampling days the volumes and constituents of the flushwater and the flushed manure were determined for a 6-h flush cycle and extrapolated to daily values. Net daily flow of solids and nutrients in manure were calculated as the differences between masses in flushed slurry and flushwater. Nitrogen and P excretion were also calculated from dietary inputs and milk output. The flow was compared with the American Society of Agricultural Engineers’ (ASAE) standards. Each cow produced 5.80 kg/d of total solids (remainder after drying at 105°C). The ASAE standard predicted DM (remainder after drying at 60°C) excretion of 8.02 to 8.53 kg/d per cow. Recovery of P amounted to 74.8 g/d per cow. Overall, 102% of intake P was recovered; 75.1% in the manure outflow and 26.9% in milk. About 285 g/d and 148 g/d of N per cow were recaptured in manure and milk, respectively; 182 g/d was presumably volatilized. All models of N excretion appeared to underestimate N excretion. Volatilization rate of N amounted to 18.1%/h for the 6-h flush interval. Measured outflow of manure-P from the facility was similar to excretion predictions. Presentation of excreted solids as both total solids and DM is warranted. We conclude that using excretion prediction equations is useful for predicting excretion and outflow of P in a lactating cow facility, but N excretion predictions exhibited bias and have to be used prudently for predicting N outflow and N volatilization.  相似文献   

4.
Prediction of manure and nutrient excretion from dairy cattle   总被引:4,自引:0,他引:4  
Accurate estimates of manure excretion are needed for planning manure storage facilities and for nutrient management. Data sets from metabolism studies conducted at several universities were compiled and evaluated for excretion of total manure, N, P, and K. Animal groups included calves weighing up to 204 kg, heifers weighing between 274 and 613 kg, nonlactating cows, and lactating cows. Regression equations were developed to predict excretion of total manure, total dry matter, N, P, and K. Predictors used in the regression equations for lactating cows included milk yield, percentages of protein and fat in milk, dietary concentrations of crude protein and neutral detergent fiber, and intakes of nutrients. The regression equations provide improved predictions of excretion and enable more accurate planning of manure storage and nutrients to be managed at the farm level.  相似文献   

5.
Organic matter (OM) in livestock manure consisting of biodegradable and nonbiodegradable fractions is known as volatile solids (VS). According to the Intergovernmental Panel on Climate Change (IPCC) Tier 2 guidelines, methane produced by stored manure is determined based on VS. However, only biodegradable OM generates methane production. Therefore, estimates of biodegradable VS (dVS; dVS = VS ? lignin) would yield better estimates of methane emissions from manure. The objective of the study was to develop mathematical models for estimating VS and dVS outputs of lactating dairy cows. Dry matter intake, dietary nutrient contents, milk yield and composition, body weight, and days in milk were used as potential predictor variables. Multicollinearity, model simplicity, and random study effects were taken into account during model development that used 857 VS and dVS measurements made on individual cows (kg/cow per day) from 43 metabolic trials conducted at the USDA Energy and Metabolism laboratory in Beltsville, Maryland. The new models and the IPCC Tier 2 model were evaluated with an independent data set including 209 VS and dVS measurements (kg/cow per day) from 2 metabolic trials conducted at the University of California, Davis. Organic matter intake (kg/d) and dietary crude protein and neutral detergent fiber contents (% of dry matter) were significantly associated with VS. A new model including these variables fitted best to data. When evaluated with independent data, the new model had a root mean squared prediction error as a percentage of average observed value (RMSPE) of 12.5%. Mean and slope biases were negligible at <1% of total prediction bias. When energy digestibility of the diet was assumed to be 67%, the IPCC Tier 2 model had a RMSPE of 13.7% and a notable mean bias for VS to be overpredicted by 0.4 kg/cow per day. A separate model including OM intake as well as dietary crude protein and neutral detergent fiber contents as predictor variables fitted best to dVS data and performed well on independent data (RMSPE = 12.7%). The Cornell Net Carbohydrate and Protein System model relying on fat-corrected milk yield and body weight more successfully predicted dry matter intake (DMI; RMSPE = 14.1%) than the simplified (RMSPE = 16.9%) and comprehensive (RMSPE = 23.4%) models to predict DMI in IPCC Tier 2 methodology. New models and the IPCC Tier 2 model using DMI from the Cornell Net Carbohydrate and Protein System model predicted VS (RMSPE = 17.7–19.4%) and dVS (RMSPE = 20%) well with small systematic bias (<10% of total bias). The present study offers empirical models that can accurately predict VS and dVS of dairy cows using routinely available data in dairy farms and thereby assist in efficiently determining methane emissions from stored manure.  相似文献   

6.
Literature data on utilization of dietary N were analyzed by using meta-analytic procedures for growing milk-fed dairy calves and weaned dairy heifers. The objective was to statistically assess N utilization and excretion in growing dairy cattle when dietary N was altered in otherwise balanced rations at various stages of growth. Studies meeting the selection criteria included data from 16 published papers encompassing 94 distinct observations made on 217 animals. Of these, 6 studied calves were fed milk or milk protein-based milk replacer [milk-fed; 30 to 81 kg of body weight (BW)] with 37 different dietary treatments, and 10 experiments studied heifers receiving diets based on forage, concentrates, or a combination of forage and concentrates (weaned; 56 to 472 kg of BW) with 57 different dietary treatments. Mixed model and fixed effect regression analyses were used to evaluate responses to additional dietary N. True digestibility of dietary N was 100.4% for milk-fed calves and 96.4% for weaned heifers, with corresponding basal fecal N excretion values of 3.05 and 6.51 g of N/kg of dry matter intake. Urinary N (g of N/kg of BW0.75) was consistently greater for milk-fed calves, but the response to increasing N intake was parallel to the response for weaned heifers. Whether using a mixed model approach or a fixed effect approach to account for metabolizable energy intake, BW, and dry matter intake, milk-fed calves retained more N per kilogram of BW0.75 than weaned heifers. However, marginal efficiency of N utilization responded as a continuous function of BW, as opposed to a bimodal response associated with diet type. Gross N efficiency (GNE) responded quadratically to N intake and was greater for milk-fed calves than for weaned heifers. Linear and quadratic coefficients of this function did not differ between diet types, indicating that the response in gross N efficiency to additional N intake was not different between diet groups; rather, the absolute level obtainable differed. Dietary CP concentrations of 18.9% for milk-fed calves and 14.2% for weaned heifers were found to maximize GNE; 22.5% MJ of crude protein/MJ of ME was found to maximize GNE for both groups. Equations are discussed relative to the requirements to replace basal N losses and efficiency of N utilization.  相似文献   

7.
Nitrogen balance (NB) experiments allow calculation of N retention in the body by subtracting N excreted in feces (NF), urine (NU) and milk (NM) from N intake (NI). In a previous study, we found that NB data from experiments with lactating dairy cows were generally high and, in the current meta-analysis, we update our earlier study with experiments from the last 2 decades and investigate probable causes of error. A total of 83 publications, with 86 experiments and 307 dietary treatments, were selected from top-ranked scientific journals that reported all NB components. The NB and NB components were analyzed by linear regression with a model that used NI as an independent variable and experiment as a random effect. The NF, NU and NM each represented 27 to 34% of NI, and the remaining N accumulated in the body was equal to 38.5 g/d (overall SD = 43.2 g/d). Retained N (as g/d or % of NI) increased linearly with NI, and this led to unlikely high N retentions, especially at high NI. Both NF and NU (g/d) increased with increasing NI, and we assume that some N in feces and urine were unaccounted. Only ~22% of experiments measured N in wet feces samples and, when analysis used dry samples, no mention of corrections due to potential volatile N losses during drying were reported. No experimentalists preserved feces immediately to prevent volatilization during collection. Moreover, ~27% of experiments estimated urine volumes by concentration of creatinine in spot samples, and in these experiments, NU was ~12% lower than those where total urine was collected (168 vs. 191 g/d). Only 40 experiments reported the volume and concentration of acids used for urine preservation, 33 furnished incomplete information, and the remainder did not describe the urine preservation method. In conclusion, the results of NB experiments using lactating dairy cows overestimate N retention, and the losses of N from feces and urine are the most probable reason.  相似文献   

8.
The objective of the current study was to investigate the effect of N-carbamoylglutamate (NCG) supplementation on milk production and nitrogen (N) utilization in Chinese Holstein dairy cows. Sixty multiparous cows (78 ± 17.3 d in milk, 635 ± 61.00 kg of body weight, and 41.9 ± 7.9 kg/d milk yield; mean ± SD) were blocked by parity, days in milk, and milk yield and randomly allocated to 1 of 4 groups, each of which was fed a dietary treatment containing 0 (control), 10, 20, or 30 g of NCG/d. Milk yield was recorded weekly. Dry matter intake, milk composition, plasma variables, and urea N contents in plasma, urine, and milk were determined every other week. Blood samples were collected from the coccygeal vein. Rumen microbial protein synthesis was estimated based on the purine derivatives in the urine. Dry matter intake was found to be similar between the treatments. Addition of 20 g of NCG/d tended to increase milk yield (40.2 vs. 38.1 kg/d) and increased the content (2.83 vs. 2.74%) and yield (1.12 vs. 1.02 kg/d) of milk protein compared with the control. The yield and content of milk fat were similar between the treatments, whereas the contents of lactose and total solids increased linearly with an increase in NCG. Dietary supplementation of NCG linearly increased the plasma nitric oxide level and decreased the plasma ammonia N level. Compared with the control, the plasma Arg concentration in cows fed 10, 20, and 30 g of NCG/d was increased by 1.1, 10.4, and 16.0%, respectively. The urea N concentrations in the milk, plasma, and urine decreased with the addition of NCG, although the lowest urea N concentrations were observed with the addition of 20 g of NCG/d. The conversion of dietary crude protein to milk protein exhibited quadratic trends of improvement by NCG supplementation, with a peak at 20 g of NCG/d. The rumen microbial protein synthesis was not altered by NCG supplementation, but the metabolizable protein tended to show a quadratic increase in cows fed 20 g of NCG/d. In conclusion, supplementation of 20 g of NVG/d may alter the plasma metabolites, optimize the AA profile, increase the metabolizable protein utilization, and thereby improve the lactation performance and N utilization of high-yielding dairy cows.  相似文献   

9.
Time budgets of lactating dairy cattle in commercial freestall herds   总被引:1,自引:0,他引:1  
The aim of this study was to examine the time budgets of 205 lactating dairy cows housed in 16 freestall barns in Wisconsin and to determine the relationships between components of the time budget and herd- and cow-level fixed effects using mixed models. Using continuous video surveillance, time lying in the stall, time standing in the stall, time standing in the alleys (including drinking), time feeding, and time milking (time out of the pen for milking and transit) during a 24-h period were measured for each cow. In addition, the number of lying bouts and the mean duration of each lying bout per 24-h period were determined. Time milking varied between cows from 0.5 to 6.0 h/d, with a mean ± standard deviation of 2.7 ± 1.1 h/d. Time milking was influenced significantly by pen stocking density, and time milking negatively affected time feeding, time lying, and time in the alley, but not time standing in the stall. Locomotion score, either directly or through an interaction with stall base type (a rubber crumb-filled mattress, MAT, or sand bedding, SAND), influenced pen activity. Lame cows spent less time feeding, less time in the alleys, and more time standing in the stalls in MAT herds, but not in SAND herds. The effect of lameness on lying time is complex and dependent on the time available for rest and differences in resting behavior observed between cows in MAT and SAND herds. In MAT herds, rest was characterized by a larger number of lying bouts of shorter duration than in SAND herds (mean = 14.4; confidence interval, CI: 12.4 to 16.5 vs. mean = 10.2; CI: 8.2 to 12.2 bouts per d, and mean = 1.0; CI: 0.9 to 1.1 vs. mean = 1.3, CI: 1.2 to 1.4 h bout duration for MAT and SAND herds, respectively). Lameness was associated with an increase in time standing in the stall and a reduction in the mean (CI) number of lying bouts per day from 13.2 (CI: 12.3 to 14.1) bouts/d for nonlame cows to 10.9 (CI: 9.30 to 12.8) bouts/d for moderately lame cows, and an overall reduction in lying time in MAT herds compared with SAND herds (11.5; CI: 10.0 to 13.0 vs. 12.7; CI: 11.0 to 14.3 h/d, respectively). These results show that time out of the pen milking, stall base type, and lameness significantly affect time budgets of cows housed in freestall facilities.  相似文献   

10.
The effect of the method of conservation of forage on endogenous N (EN) secretion was studied using a 15N isotope dilution technique in 4 lactating Holstein cows selected from a replicated 3 × 3 Latin square. Cows were equipped with ruminal, duodenal (n = 4), and ileal (n = 2) cannulas. Diets comprised 44% concentrate plus first-cut timothy conserved either as hay or as restrictively (formic) or extensively (inoc) fermented silage. Crude protein contents of hay, formic, and inoc averaged 10.4, 13.6, and 14.8%, respectively. Total EN flow and free EN at the duodenum were increased with hay compared with silages but were similar when expressed as proportion of duodenal N flow, with total EN flow averaging 25.8, 23.9, and 23.9% for hay, formic, and inoc, respectively, and free EN at the duodenum averaging 11.5, 9.8, and 9.7% for hay, formic, and inoc, respectively. Flow of bacterial N at the duodenum originating from an endogenous source tended to be higher with inoc compared with formic. Overall, the proportion of bacterial N derived from endogenous sources and urea was similar between treatments, averaging 23 and 15%, respectively. In the feces, flow of EN was similar across treatments and averaged 31% of total fecal N. More than 70% of fecal EN originated from undigested secretions into the forestomach. Absorption of N from the forestomach tended to increase for silages compared with hay. In conclusion, EN represented an important fraction of N flowing at the duodenum and in the feces. The free EN and the total EN at the duodenum were altered by the different methods of forage conservation studied. Estimation of true dietary N supply and requirements of the dairy cow should allow for endogenous N flows and losses.  相似文献   

11.
This experiment investigated the effect of dietary crude protein (CP) and ruminally degraded protein (RDP) levels on rumen fermentation, digestibility, ammonia emission from manure, and performance of lactating dairy cows. The experiment was a replicated 3 × 3 Latin square design with 6 cows. Three diets varying in CP concentration were tested (CP, % of dry matter): 15.4 (high CP, control), 13.4 (medium CP), and 12.9% (low CP). These diets provided metabolizable protein balances of 323, −44, and 40 g/d and RDP balances of 162, −326, and −636 g/d (high, medium, and low, respectively). Both the medium and low CP diets decreased ruminal pH compared with high CP, most likely because of the higher nonfiber carbohydrate concentration in the former diets. Ruminal ammonia pool size (rumen ammonia N was labeled with 15N) and the concentration of total free amino acids were greater for the high CP diet than for the RDP-deficient diets. Apparent total-tract nutrient digestibilities were not affected by treatment. Both the medium and low CP diets resulted in lower absolute and relative excretion of urinary N compared with the high CP diet, as a proportion of N intake. Excretion of fecal N and milk yield and composition were not affected by diet. Milk N efficiency (milk N ÷ N intake) and the cumulative secretion of ammonia-15N in milk protein were greater for the RDP-deficient diets, and milk urea N concentration was greater for the high CP diet. Both medium and low CP diets decreased the irreversible loss of ruminal ammonia N compared with the high CP diet. The rate and cumulative ammonia emissions from manure were lower for the medium and low CP diets compared with the high CP diet. Overall, this study demonstrated that dairy diets with reduced CP and RDP concentrations will produce manure with lower ammonia-emitting potential without affecting cow performance, if metabolizable protein requirements are met.  相似文献   

12.
Nitrogen (N) efficiency is one of the key drivers of environmentally and economically sustainable agricultural production systems. An N balance model was developed, evaluated, and validated to assess N use efficiency and N surplus and to predict N losses from contrasting grass-based dairy production systems in Ireland. Data from a 5-yr study were used to evaluate and validate the model. Grass-based and high-concentrate production systems combined with 3 divergent strains of Holstein-Friesian (HF) dairy cows—high-production North American (HP), high-durability North American (HD), and New Zealand (NZ)—were evaluated. As concentrate input increased, N surplus per hectare increased and N use efficiency per hectare decreased (23 and 10%, respectively). When the N required to rear replacement animals to maintain the production system was considered, the N surplus of the HP genetic strain was greater (156 kg of N/cow) than that of the HD (140 kg of N/cow) or the NZ (128 kg of N/cow). The model estimated N leaching of 8.1 mg of NO3-N/L, similar to that measured by others at the same site. The model creates awareness of methods and indicators available to assess the most suitable and environmentally sustainable grass based dairy production systems.  相似文献   

13.
Four primiparous and 4 multiparous midlactation dairy cows were stratified by pre-experimental milk yield (23.5 ± 2.3 kg/d), protein yield (0.75 ± 0.066 kg/d), parity, and days in lactation (121 ± 10 d) into 4 groups of 2 in a 2 × 2 factorial, Latin square design (n = 8) to assess the effect of forage source and a supplementary methionine hydroxy analog on nitrogen (N) balance where low crude protein (CP) diets (13.3%) are offered. Diets contained either predominantly grass silage [GS (G− and G+)] or corn silage [CS (C− and C+)] as the forage source and were offered with (G+ and C+) or without (G− and C−) the isopropyl ester of 2-hydroxy-4 methylthio butanoic acid (HMBi). The G− and G+ contained 46% GS and 10% CS in the dry matter (DM), whereas C− and C+ contained 12% GS and 52% CS in the DM. Supplementary HMBi was included at a rate of 0.2% of DM in G+ and C+ diets. Diets were isonitrogenous (9.8 ± 0.4% protein truly digested in the small intestine) and isoenergetic (0.96 ± 0.01 units of energy for lactation; kg/DM). Each of the 4 experimental periods lasted 24 d: 14 d for dietary adaptation, followed by 10 d of housing in individual metabolism stalls; N balance was conducted on the last 5 d of each experimental period. Intake of DM was higher for CS-based vs. GS-based diets (20.23 vs. 18.41 kg/d). No effect of dietary treatment was found on milk yield or yields of milk fat, protein, and lactose. Supplementing with HMBi tended to improve milk solids yield (1.69 vs. 1.59 kg/d), casein yield (0.59 vs. 0.55 kg/d), and concentrations of casein (2.89 vs. 2.73%) and protein (3.58 vs. 3.49%) in the milk. Dietary N intake was higher for CS-based vs. GS-based diets (0.460 vs. 0.422 kg/d). However, forage source or supplementary HMBi had no effect on N excretion in the feces, urine, or milk. Excretion of urinary urea was positively related to N intake. Concentrations of urea N in the plasma (2.34 vs. 1.72 mmol/L), milk (2.54 vs. 2.24 mmol/L), and urine (123.32 vs. 88.79 mmol/L), and total excretion of urinary urea N (40.23 vs. 35.09 g/d) were higher for animals offered CS-based vs. GS-based diets. Corn silage improved N intake through improved DM intake. However, neither forage source nor HMBi supplementation affects N output in the feces, urine, or milk.  相似文献   

14.
15.
Twenty-eight (8 ruminally cannulated) lactating, multiparous Holstein cows were blocked by DIM and randomly assigned to 7 replicated 4 × 4 Latin squares (28-d periods) to investigate the effects of different dietary ratios of alfalfa silage (AS) to corn silage (CS) on production, N utilization, apparent digestibility, and ruminal metabolism. The 4 diets contained (dry matter basis): A) 51% AS, 43% rolled high-moisture shelled corn (HMSC), and 3% solvent soybean meal (SSBM); B) 37% AS, 13% CS, 39% HMSC, and 7% SSBM; C) 24% AS, 27% CS, 35% HMSC, and 12% SSBM; and D) 10% AS, 40% CS, 31% HMSC, and 16% SSBM. Dietary crude protein contents were 17.2, 16.9, 16.6, and 16.2% for diets A, B, C, and D. All 4 diets were high in energy, averaging 49% nonfiber carbohydrates and 24% neutral detergent fiber. Intake of dry matter, yield of milk, 3.5% fat-corrected milk and fat, milk fat content, and apparent digestibility of neutral detergent fiber and acid detergent fiber all decreased linearly when CS replaced AS. Effects on fiber digestion and milk fat may have been due to increasing fluctuation in ruminal pH and time the pH remained <6.0 when CS replaced AS. Milk protein content increased linearly with increasing CS, but there were no differences in protein yield. There were linear increases in apparent N efficiency and decreases in N excreted in urine and feces when CS replaced AS. Production was depressed on the diet highest in CS. Quadratic analysis indicated that milk and protein yields were maximal at dietary AS:CS ratios of, respectively, 37:13 and 31:19. No diet minimized N excretion without negatively affecting production. Diet C, with an AS:CS ratio of 24:27, was the best compromise between improved N efficiency and sustained production. Because CS is complementary with AS, it is recommended that CS be fed in AS-based diets to maintain milk yield while improving N utilization.  相似文献   

16.
Twenty-eight (8 with ruminal cannulas) lactating Holstein cows were assigned to 4 × 4 Latin squares and fed diets with different levels of rumen-degraded protein (RDP) to study the effect of RDP on production and N metabolism. Diets contained [dry matter (DM) basis] 37% corn silage, 13% alfalfa silage, and 50% concentrate. The concentrate contained solvent and lignosulfonate-treated soybean meal and urea, and was adjusted to provide RDP at: 13.2, 12.3, 11.7, and 10.6% of DM in diets A to D, respectively. Intake of DM and yield of milk, fat-corrected milk, and fat were not affected by treatments. Dietary RDP had positive linear effects on milk true protein content and microbial non-ammonia N (NAN) flow at the omasal canal, and a quadratic effect on true protein yield, with maximal protein production at 12.3% RDP. However, dietary RDP had a positive linear effect on total N excretion, with urinary N accounting for most of the increase, and a negative linear effect on environmental N efficiency (kg of milk produced per kg of N excreted). Therefore, a compromise between profitability and environmental quality was achieved at a dietary RDP level of 11.7% of DM. Observed microbial NAN flow and RDP supply were higher and RUP flow was lower than those predicted by the NRC (2001) model. The NRC (2001) model overpredicted production responses to RUP compared with the results in this study. Replacing default NRC degradation rates for protein supplements with rates measured in vivo resulted in similar observed and predicted values, suggesting that in situ degradation rates used by the NRC are slower than apparent rates in this study.  相似文献   

17.
目的建立滴定法测定乳制品中非蛋白氮含量的不确定度评定的方法。方法根据中华人民共和国国家标准GB/T21704-2008《乳与乳制品中非蛋白氮含量的测定》和中华人民共和国国家计量技术规范JJF1059.1-2006《测定不确定度的评定与表示》建立不确定度模型,运用《测量不确定度评定与表示指南》,分析该方法测定中各不确定因素。结果当乳制品中非蛋白氮的含量为0.0274%,不确定度为0.000258%,非蛋白氮含量表示为[(0.0274±0.000258)%,K=2]。结论在确定的实验条件下,本方法的不确定度主要来自于标定硫酸标准溶液和滴定非蛋白氮时对终点的判断,同时测定非蛋白氮时的重复试验也是一个主要影响因素。  相似文献   

18.
《Journal of dairy science》2022,105(9):7462-7481
Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.  相似文献   

19.
The main objectives of this study were to assess the relationship between ammonia emissions from dairy cattle manure and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) concentration. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123 ± 26 d in milk (DIM)], mid (175 ± 3 DIM), and late (221 ± 12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square design balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of feces and urine as well as milk sample collection. The feces and urine from each cow were mixed in the proportions in which they were excreted to make slurry that was used to measure ammonia emissions at 22.5°C over 24 h using flux chambers. Samples of manure slurry were taken before and after ammonia emission measurements. The amount of slurry increased by 22% as dietary CP concentration increased from 15 to 21%, largely because of a greater urine volume (25.3 to 37.1 kg/d). Initial urea N concentration increased linearly with dietary CP from 153.5 to 465.2 mg/dL in manure slurries from cows fed 15 to 21% CP diets. Despite the large initial differences, the final concentration of urea N in manure slurries was less than 10.86 mg/dL for all dietary treatments. The final total ammoniacal N concentration in manure slurries increased linearly from 228.2 to 508.7 mg/dL as dietary CP content increased from 15 to 21%. Ammonia emissions from manure slurries ranged between 57 and 149 g of N/d per cow and increased linearly with dietary CP content, but were unaffected by stage of lactation. Ammonia emission expressed as a proportion of N intake increased with percentage CP in the diet from about 12 to 20%, whereas ammonia emission as a proportion of urinary urea N excretion decreased from 67 to 47%. There was a strong relationship between ammonia emission and MUN [ammonia emission (g/d per cow) = 25.0 (±6.72) + 5.03 (±0.373) × MUN (mg/dL); R2 = 0.85], which was not different among lactation stages. Milk urea N concentration is one of several factors that allows prediction of ammonia emissions from dairy cattle manure.  相似文献   

20.
Six ruminally and duodenally cannulated lactating primiparous Holstein cows were used to study the effects of different methods of conservation of timothy on N metabolism. Cows were assigned randomly to 2 replicated 3 × 3 Latin squares (35-d periods). Because of missing data from 2 cows, data were analyzed as a 3 × 4 Youden square. Diets contained a similar concentrate (44% of total ration on a dry matter basis) plus first-cut timothy conserved as hay, or as restrictively (formic) or extensively fermented silage (inoc). Crude protein contents were 10.4, 13.6, and 14.8% for hay, formic, and inoc, respectively. Hay and formic had a high soluble carbohydrate content (≥8.0% of dry matter) and formic and inoc had a high soluble protein content (≥8.0% of dry matter). Haying and restricting fermentation resulted in increased efficiency of partition to milk N (30.9, 28.2, 24.7% of N intake for hay, formic, and inoc, respectively). Despite a 14% lower N intake with hay, no effects of treatments were detected on microbial protein synthesis and apparent intestinal digestion of essential AA. Haying reduced feed protein degradation in the rumen, whereas this effect was not observed when restricting fermentation in the silage. Haying and restricting fermentation induced a lipogenic fermentation pattern in the rumen (4.55, 4.23, and 3.78 ratio of acetate to propionate for hay, formic, and inoc), but no effects on milk fat yield and plasma glucose were observed. Whole-body protein metabolism was unaffected by treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号