首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The objective of this study was to evaluate the methodology of the acid detergent lignin (ADL) assay in an effort to evaluate particle loss, improve repeatability, and decrease variation within and among samples. The original ADL method relied on asbestos as a filtering aid, but that was removed in 1989 with the mandate from the Environmental Protection Agency to eliminate asbestos in the environment. Furthermore, recent work on fiber methodology indicated that pore size in the Gooch sintered glass crucible (40-60 μm) was too large to trap all of the small particles associated with neutral detergent fiber (NDF) and acid detergent fiber (ADF). Thus, any loss of ADF could potentially result in a loss of ADL. Sixty forages including conventional and brown midrib corn silages, alfalfa silages and hays, mature grasses, early vegetative grasses, and 9 feces samples, were analyzed sequentially for ADF and ADL as outlined in the 1973 procedure of Van Soest except for the use of the asbestos fiber. A glass microfiber filter with a 1.5-μm pore size was chosen as a filtering aid because it met the criteria required by the assay: glass, heat resistant, acid resistant, chemically inert, and hydrophobic. To compare with the current ADF and ADL assays, the assays were conducted with either no filter or the glass filter inserted into crucibles, rinsed with acetone, and then according to the 1973 procedure of Van Soest. The samples analyzed covered a range from 18.11 to 55.79% ADF and from 0.96 to 9.94% ADL on a dry matter (DM) basis. With the use of the filter, the mean ADF values increased 4.2% and mean ADL values increased 18.9%. Overall, both ADF and ADL values were greater with the use of the glass microfiber filter than without, indicating that as the type of sample analyzed changed, use of the Gooch crucible without the filtering aid results in particle loss. The adoption of the use of a small pore size (1.5 μm) glass microfiber filter to improve filtration and recovery of ADF and ADL and to reduce variation in the ADL assay is recommended, especially when sintered glass bottom crucibles are used. These differences in recovery and repeatability have implications for other fiber and lignin methods, as well as for estimating the potential changes in digestibility of fibrous feeds and feed quality.  相似文献   

2.
The objective of this study was to correlate in vitro and in vivo neutral detergent fiber (NDF) digestibility (NDFD) with the chemical composition of forages and specific chemical linkages, primarily ester- and ether-linked para-coumaric (pCA) and ferulic acids (FA) in forages fed to dairy cattle. The content of acid detergent lignin (ADL) and its relationship with NDF does not fully explain the observed variability in NDFD. The ferulic and p-coumaric acid linkages between ADL and cell wall polysaccharides, rather than the amount of ADL, might be a better predictor of NDFD. Twenty-three forages, including conventional and brown midrib corn silages and grasses at various stages of maturity were incubated in vitro for measurement of 24-h and 96-h NDFD. Undigested and digested residues were analyzed for NDF, acid detergent fiber (ADF), ADL, and Klason lignin (KL); ester- and ether-linked pCA and FA were determined in these fractions. To determine whether in vitro observations of ester- and ether-linked pCA and FA and digestibility were similar to in vivo observations, 3 corn silages selected for digestibility were fed to 6 ruminally fistulated cows for 3 wk in 3 iso-NDF diets. Intact samples and NDF and ADF residues of diet, rumen, and feces were analyzed for ester- and ether-linked pCA and FA. From the in vitro study, the phenolic acid content (total pCA and FA) was highest for corn silages, and overall the content of ester- and ether-linked pCA and FA in both NDF and ADF residues were correlated with NDF digestibility parameters, reflecting the competitive effect of these linkages on digestibility. Also, Klason lignin and ADL were negatively correlated with ether-linked ferulic acid on an NDF basis. Overall, esterified FA and esterified pCA were negatively correlated with all of the measured fiber fractions on both a dry matter and an NDF basis. The lignin content of the plant residues and chemical linkages explained most of the variation in both rate and extent of NDF digestion but not uniformly among forages, ranging from 56 to 99%. The results from the in vivo study were similar to the in vitro data, demonstrating the highest total-tract aNDF digestibility (70%; NDF analysis conducted with α-amylase and sodium sulfite) for cows fed the corn silage with the lowest ester- and ether-linked pCA content in the NDF fraction. In this study, digestibility of forage fiber was influenced by the linkages among lignin and the carbohydrate moieties, which vary by hybrid and species and most likely vary by the agronomic conditions under which the plant was grown.  相似文献   

3.
为准确测定烟草及其制品中各种纤维素含量,优化了洗涤剂法的前处理条件,并定量分析了烟叶及烟草制品中中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)和酸性洗涤木质素(ADL)。结果表明:1)前处理中用苯、乙醇、乙醚混合溶剂回流4 h能除去绝大部分酯溶性的干扰物质;2)使用高温淀粉酶能够消除烟叶中淀粉对中性洗涤纤维检测带来的干扰;3)NDF、ADF、ADL检测限分别为0.26%、0.17%、0.17%,回收率为89%-101.4%;4)不同类型烟叶原料之间NDF和ADF含量的差异明显高于不同类型卷烟之间的差异;5)烟草及烟草制品的ADL含量基本都在3%以下。  相似文献   

4.
The detergent system of analysis partitions lignin into two fractions: acid detergent lignin (ADL), usually equated with forage lignin, and ‘acid detergent dispersible lignin’ (ADDL), the existence of which has scarcely been recognized, but can be higher than ADL in tropical grasses. For nine species ADL and ADDL as percentage of original dry matter were, respectively: Aristides calcyna. 8.9 and 9.8; Astrebla squarrosa, 8.6 and 14.7; Chloris gayana, 3.9 and 6.7; Eragrostis sp, 4.3 and 8.8; Heteropogon eontorius, 3.9 and 10.4; Iseilema membranaceum 7.2 and 8.2; Panicum maximum, 1.8 and 5.7; Themeda triandra, 7.3 and 8.2; Sorghum sp, 3.4 and 13.8. Tropical legumes (four species) had much lower levels of ADDL. Azo-stained fibre showed that most of the free phenolic functions and the alkali-soluble lignin were in the ADDL fraction. The difference between grasses and legumes was so marked that azo-staining may provide a method for distinguishing grass and legume particles in feed or faecal samples. The apparent discrepancies between grasses and legumes in the effect of lignin on digestibility may be explained by the grass lignin having been grossly underestimated as ADL. When Heteropogon contortus and Astrebla squarrosa were incubated in dacron bags in the rumen the ratio of ADDL to ADL in the residual fibre decreased markedly in the first 48 h, indicating a higher apparent digestibility for ADDL. From feeding experiments with sheep the apparent digestibility of ADL and ADDL were 18 and 38% for Astrebia squarrosa and 14 and 26% for Stylosanthes hamata. As isolated lignin corresponding to ADDL was inhibitory in vitro to a mixed rumen microbial population at a concentration of 0.12 mg ml?1. Measurement of ADDL could easily be included in fibre analysis by the sequential detergent method as it would require only UV absorbance measurement on the acid detergent filtrate. This would allow measurement of total lignin within the existing system.  相似文献   

5.
《Journal of dairy science》2022,105(10):8099-8114
This study evaluated the effect on dairy cows of the partial replacement of whole plant corn silage (WPCS) with corn ear fibrous coproduct (CEFC) in diets with concentrate coproducts from citrus and corn on dry matter intake (DMI), lactation performance, digestibility, and chewing behavior. Holstein dairy cows (n = 20) in 5, 4 × 4 Latin squares (21-d periods) were fed a combination of strategies for feeding fibrous coproducts in a 2 × 2 factorial arrangement of the following treatments: (1) forage feeds: the partial replacement of WPCS (CS) with CEFC (CO), and (2) concentrate feeds: the partial replacement of wet corn gluten feed (GF) with a blend of pelleted citrus and corn distillers dried grains (CD) to have isonitrogenous diets. The concentrations of physically effective neutral detergent fiber (NDF; peNDF>8) were (% of dry matter): 21.8% for CS, 19.2% for CO, 20.7% for GF, and 20.2% for CD. Cows fed diet CS-CD had the highest yield of energy-corrected milk (30.0 kg/d) relative to the other diets (28.4 kg/d). Milk fat concentration was reduced on CO relative to CS. Cows fed the CO diets had higher DMI (21.2 vs. 20.2 kg/d) and digestible organic matter intake and tended to have a lower ratio of energy-corrected milk to DMI than cows fed CS. Diets CO reduced the daily intake of peNDF>8 and the intake as percent of body weight of peNDF>8, forage NDF, and total NDF relative to CS. Cows fed CO had greater meal frequency and lower daily meal time, meal duration, meal size, and duration of the largest meal than cows fed CS. The CO diet reduced rumination and total chewing in minutes per day and minutes per kilogram of DMI. When expressed per unit of peNDF>8 intake, rumination and total chewing were not affected by forage source. The total-tract starch digestibility coefficient was lower for cows fed CO than CS, but the intake of digestible starch was higher on CO than CS. Cows fed GF had reduced milk yield (29.6 vs. 30.8 kg/d), tended to have reduced DMI (20.4 vs. 21.0 kg/d), and had reduced digestible organic matter intake than cows fed CD. Feed efficiency was not affected by source of concentrate. The type of concentrate did not affect the intake of forage NDF and peNDF>8, but cows fed GF had higher intake of total NDF as percent of body weight than cows fed CD. The GF increased meal frequency and reduced meal size and largest meal duration and size. Cows fed GF had higher rumination and total chewing than cows fed CD (min/d, min/kg of DMI, and min/kg peNDF>8). Starch digestibility was higher and the intake of digestible starch tended to be higher on cows fed GF than CD. Plasma urea-N was higher, milk urea-N tended to be higher, and N utilization efficiency tended to be lower on cows fed GF than CD. Ruminal microbial yield was not affected by any treatment. All strategies evaluated were nutritionally viable and CEFC was a feasible partial replacement for WPCS.  相似文献   

6.
《Journal of dairy science》2023,106(6):4464-4469
At least 2 basic inputs are needed to formulate rations: the nutritional requirements of the animals to be fed and the nutritional composition of the feeds. David R. Mertens not only defined fiber requirements for dairy cattle but became a leading expert in the laboratory measurement of fiber in feeds, digesta, and feces. Fiber is a heterogeneous nutritional entity composed mainly of polysaccharides and polyphenolics. Because the method defines the fiber that is measured, methods must be described thoroughly and followed exactly to obtain results that are repeatable within a laboratory and reproducible among others. Filtration of neutral detergent fiber (NDF) can be difficult, and those who have worked in his laboratory can attest that Mertens rigorously studied this, along with other method details to improve NDF analysis from sample preparation to blank corrections. Mertens's procedure for amylase-treated NDF (aNDF), using α-amylase and sodium sulfite with crucibles, culminated in the Association of Official Analytical Chemists Official Method 2002.04 for aNDF, which was also accepted as International Standard ISO 16472:2006 and is used worldwide as a reference method for feed evaluation. Because aNDF digestibility is variable and a key factor in overall digestibility, Mertens also worked to improve in vitro ruminal digestibility and gas production procedures within and among laboratories, including procedures using flasks or filter bags. His in vitro gas production method is currently used by commercial laboratories that generate a significant share of the aNDF digestibility results reported worldwide. Outside of the laboratory, his extensive outreach to commercial and research laboratories has had a huge impact on fiber analysis, in vitro digestibility, and other laboratory procedures. While advising the National Forage Testing Association, Mertens provided program infrastructure that improved laboratory proficiency in more than 120 laboratories in the United States and around the world. Most importantly, thanks to his advances in fiber analysis and in vitro digestibility techniques, Mertens has enhanced the evaluation of feeds and the nutrition and health of dairy cows. These contributions have helped thousands of dairy farmers and nutritionists around the globe and continue to have a substantial impact on the industry.  相似文献   

7.
Alfalfa (Medicago sativa L), red clover (Trifolium pratense L), birdsfoot trefoil (Lotus corniculatus L), sainfoin (Onobrychis viciifolia Scop), crownvetch (Coronilla varia L), cicer milkvetch (Astragrlus cicer L), sericea lespedeza (Lespedeza cuneata (Dum-Cours) G Don) and kura clover (Trifolium ambiguum M Bieb) were subjected to sequential detergent fibre analysis to investigate the effects that the addition of sodium sulphite to neutral detergent has on the recovery and composition of fibre and lignin from forage legumes that vary in levels of proanthocyanidin (PA). Soluble, insoluble and neutral detergent insoluble PA (NDIPA) concentrations were highest in sericea, moderate in crownvetch, sainfoin and birdsfoot trefoil and absent in alfalfa, cicer milkvetch, red clover and kura clover. Addition of sodium sulphite reduced levels of neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL), neutral detergent insoluble nitrogen (NDIN) and acid detergent insoluble nitrogen (ADIN) recovered from most forages tested. The addition of sodium sulphite effectively eliminated NDIPA from NDF. The difference between fibre fractions prepared without and with the addition of sodium sulphite during the neutral detergent procedure was related to PA concentration. Neutral detergent fibre difference was positively correlated with soluble PA (r = 0.730, p = 0.0001), insoluble PA (r = 0.905, p = 0.0001) and NDIPA (r = 0.913, p = 0.0001). Acid detergent fibre difference was positively correlated with soluble PA (r = 0.796, p = 0.0001), insoluble PA (r = 0.976, p = 0.0001) and NDIPA (r = 0.974, p = 0.0001). Acid detergent lignin difference was positively correlated with soluble PA (r = 0.846, p = 0.0001), insoluble PA (r = 0.992, p = 0.0001) and NDIPA (r = 0.972, p = 0.0001). Neutral detergent insoluble nitrogen difference was positively correlated with soluble PA (r = 0.475, p = 0.0255), insoluble PA (r = 0.579, p = 0.0047) and NDIPA (r = 0.570, p = 0.0056). Acid detergent insoluble nitrogen difference was positively correlated with soluble PA (r = 0.798, p = 0.0001), insoluble PA (r = 0.969, p = 0.0001) and NDIPA (r = 0.979, p = 0.0001). Sodium sulphite has large effects on fibre values of PA-containing species. Our results suggest that the difference between fibre fractions prepared with and without the addition of sulphite to neutral detergent may be used to determine the effects of PA on protein solubility in detergents. © 1999 Society of Chemical Industry  相似文献   

8.
Two methods—Klason lignin (KL) and acid detergent lignin (ADL)— for determining lignin concentration in plants were compared using stem material from lucerne (Medicago sativa L), cocksfoot (Dactylis glomerata L) and switchgrass (Panicum virgatum L), at three stages of maturity, and leaf samples from lucerne and cocksfoot. For all forages, KL values were higher than ADL values. Lucerne samples, which had crude protein levels twice that of the grass species, had KL values that were only 30–40% higher than ADL values; in grasses, KL values were 200–300% greater than ADL values. The addition of nitrogenous materials (bovine serum albumin, lysine, and ammonium sulfate) to commercial xylan and cellulose did not result in additional KL residue. Pyrolysis-GC-MS revealed that both residues appeared to be similar to the orginal plant lignin and did not appear to be contaminated with carbohydrate or protein. The higher values for grass KL residues were not due to protein con- tamination or incomplete hydrolysis of carbohydrates, but were more likely due to the solubilization of lignin components by the ADL treatment. KL values may give a more accurate quantification of the total lignin within forage plants.  相似文献   

9.
Chemical and biological delignification methods were used to investigate the relationship between the concentration and composition of lignin and degradation of forage cell walls. Stem material from lucerne (Medicago sativa L), smooth bromegrass (Bromus inermis Leyss) and maize (Zea mays L) stalks was treated with alkaline hydrogen peroxide, potassium permanganate, sodium chlorite, sodium hydroxide, nitrobenzene, and the lignolytic fungus Phanerochaete chrysosporium. Klason lignin and esterified and etherified phenolic acids were delermined. Cell wall neutral sugar and uronic acid composition and the extent of in-vitro degradability were measured. Chemical delignification generally removed lignin. but the fungal treatment resulted in the removal of more polysaccharide than lignin. The concentrations of esterfied and etherified p-coumaric and ferulic acids were generally reduced in treated cell walls; chlorite treatment preferentially removing p-coumaric acid whereas nitrobenzene treatment removed more ferulic acid. Syringyl moieties were completely removed from the core lignin polymer by nitrobenzene treatment of forage stems. Alkaline hydrogen peroxide and nitrobenzene were generally the most effective delignification treatments for improving polysaccharide degradability, with the grass species responding similarly to delignification whereas lucerne was somewhat less responsive. Fungal delignification, under these experimental conditions, did not improve cell wall degradability of these forages. Multiple regression and covariate analyses indicated that the lignin components measured were not powerful predictors of cell wall degradability. Neither the concentration nor the composition of the lignin fractions was consistently correlated with degradation. This lack of effect was attributed to the more generalised disruption of the cell wall matrix structure by delignification treatments.  相似文献   

10.
11.
BACKGROUND: The effectiveness of the analysis of cell wall‐bound hydroxycinnamic acids and the composition of lignin to evaluate the in vivo digestibility of a silage collection with unknown botanical composition was evaluated. RESULTS: Syringyl units content and total etherified phenols showed the highest correlation coefficients with in vivo dry matter digestibility (IVDMD) (r = ? 0.792 and r = ? 0.703, respectively), while guaiacyl units and total phenols showed the highest correlation coefficients with in vivo organic matter digestibility (IVOMD) (r = ? 0.871 and r = ? 0.817, respectively). Using the above‐mentioned chemical parameters, 10 equations were also developed to predict in vivo digestibility. The prediction of IVDMD produced a high adjusted R2 value (0.710) using syringyl, total lignin, etherified total phenols, esterified ferulic acid and total phenol content as predictors. The prediction of IVOMD produced a higher adjusted R2 value (0.821) using guaiacyl, total phenols, total ferulic acid and etherified p‐coumaric acid content as predictors. CONCLUSION: Cell wall digestibility depends on a multiplicity of factors and it is not possible to attribute a causal effect on in vivo digestibility to any single factor. However, syringyl and guaiacyl content and etherified phenols emerge as good predictors of digestibility. Copyright © 2010 Society of Chemical Industry  相似文献   

12.
The objectives of this study were to determine how feeding diets that differed in dietary neutral detergent fiber (NDF) concentration and in vitro NDF digestibility affects dry matter (DM) intake, ruminal fermentation, and milk production in early lactation dairy cows. Twelve rumen-cannulated, multiparous Holstein cows averaging 38 ± 15 d (±standard deviation) in milk, and producing 40 ± 9 kg of milk daily, were used in a replicated 4 × 4 Latin square design with 28-d periods. Treatment diets were arranged in a 2 × 2 factorial with 28 or 32% dietary NDF (DM basis) and 2 levels of straw NDF digestibility: 1) LD, untreated wheat straw (77% NDF, 41% NDF digestibility) or 2) HD, anhydrous NH3-treated wheat straw (76% NDF, 62% NDF digestibility). All 4 diets consisted of wheat straw, alfalfa silage, corn silage, and a concentrate mix of cracked corn grain, corn gluten meal, 48% soybean meal, and vitamins and minerals. Wheat straw comprised 8.5% DM of the 28% NDF diets and 16% DM of the 32% NDF diets. Cows fed 28% NDF and HD diets produced more milk, fat, and protein than those consuming 32% NDF or LD diets. Dry matter intake was greater for cows consuming 28% NDF diets, but intakes of DM and total NDF were not affected by in vitro NDF digestibility. Intake of digestible NDF was greater for cows consuming HD diets. Ruminal fermentation was not affected by feeding diets that differed in NDF digestibility. Ruminal NDF passage rate was slower for cows fed HD than LD. No interactions of dietary NDF concentration and in vitro NDF digestibility were observed for any parameter measured. Regardless of dietary NDF concentration, increased in vitro NDF digestibility improved intake and production in early lactation dairy cows.  相似文献   

13.
14.
In a modified method for measuring Resistant Starch (RS) in dietary fiber residues all operations for obtaining fiber residues and determination of RS were performed in a 50 mL centrifugation tube. This minimized error sources and simplified previous methodology.  相似文献   

15.
阳智  刘呈坤  吴红  毛雪 《纺织学报》2021,42(7):54-61
为实现木质素作为一种可再生、易降解的环保原材料在制备碳纤维领域的应用,通过静电纺丝、预氧化和炭化工艺制备了木质素/聚丙烯腈基碳纤维.借助旋转流变仪、电导率仪、扫描电子显微镜、傅里叶变换红外光谱仪、X射线光电子能谱仪和比表面积测试仪研究了木质素的添加对纺丝溶液的性质、预氧丝和碳纤维结构与性能的影响.结果表明:在保证溶液可...  相似文献   

16.
Many nutrition models rely on summative equations to estimate feed and diet energy concentrations. These models partition feed into nutrient fractions and multiply the fractions by their estimated true digestibility, and the digestible mass provided by each fraction is then summed and converted to an energy value. Nonfiber carbohydrate (NFC) is used in many models. Although it behaves as a nutritionally uniform fraction, it is a heterogeneous mixture of components. To reduce the heterogeneity, we partitioned NFC into starch and residual organic matter (ROM), which is calculated as 100 ? CP ? LCFA ? ash ? starch – NDF, where crude protein (CP), long-chain fatty acids (LCFA), ash, starch, and neutral detergent fiber (NDF) are a percentage of DM. However, the true digestibility of ROM is unknown, and because NDF is contaminated with both ash and CP, those components are subtracted twice. The effect of ash and CP contamination of NDF on in vivo digestibility of NDF and ROM was evaluated using data from 2 total-collection digestibility experiments using lactating dairy cows. Digestibility of NDF was greater when it was corrected for ash and CP than without correction. Conversely, ROM apparent digestibility decreased when NDF was corrected for contamination. Although correcting for contamination statistically increased NDF digestibility, the effect was small; the average increase was 3.4%. The decrease in ROM digestibility was 7.4%. True digestibility of ROM is needed to incorporate ROM into summative equations. Data from multiple digestibility experiments (38 diets) using dairy cows were collated, and ROM concentrations were regressed on concentration of digestible ROM (ROM was calculated without adjusting for ash and CP contamination). The estimated true digestibility coefficient of ROM was 0.96 (SE = 0.021), and metabolic fecal ROM was 3.43 g/100 g of dry matter intake (SE = 0.30). Using a smaller data set (7 diets), estimated true digestibility of ROM when calculated using NDF corrected for ash and CP contamination was 0.87 (SE = 0.025), and metabolic fecal ROM was 3.76 g/100 g (SE = 0.60). Regardless of NDF method, ROM exhibited nutritional uniformity. The ROM fraction also had lower errors associated with the estimated true digestibility and its metabolic fecal fraction than did NFC. Therefore, ROM may result in more accurate estimates of available energy if integrated into models.  相似文献   

17.
Within-farm variation in forage composition can be substantial and potentially costly, and it presents challenges for sampling the forage accurately. We hypothesized that day-to-day variation in forage neutral detergent fiber (FNDF) concentrations and diet variation caused by sampling error would have negative effects on production measures in lactating dairy cows. Twenty-four Holstein cows (73 d in milk) were used in 8 replicated 3 × 3 Latin squares with 21-d periods. Treatments were (1) control (CON), (2) variable (VAR), and (3) overreacting (ORR). On average, over the 21-d period, all 3 treatments were the same [24.7% FNDF and 48.2% forage dry matter (DM) composed of 67% alfalfa silage and 33% grass silage]. The CON treatment was essentially consistent day-to-day in total forage and FNDF concentrations and proportion of alfalfa and grass silages. The VAR treatment changed daily (in a random pattern) in proportion of alfalfa and grass silages fed, which resulted in day-to-day changes in FNDF (range was 21.5 to 28%). The ORR treatment varied in a 5-d cyclic pattern in total forage and FNDF concentrations (26, 24, 28, and 21.5% FNDF). Over the 21 d, ORR (25.1 kg/d) had higher DM intake compared with CON (24.5 kg/d) and VAR (24.3 kg/d). Milk production (42.8 kg/d), milk fat (3.5%), and milk protein (2.8%) were not affected by treatment; however, a treatment × day interaction was observed for milk production. Lower daily milk yields for VAR and ORR compared with CON were rare; they only followed sustained 4- and 5-d periods of feeding higher FNDF diets compared with CON. In contrast, increased daily milk yields for VAR and ORR versus CON were more frequent and followed sustained diet changes of only 2 or 3 d. Lipolytic and lipogenic-related enzyme mRNA abundances in subcutaneous adipose tissue were not affected by treatment. Treatment × day interactions were observed for milk fatty acid markers of cellulolytic bacteria (iso-14:0, iso-15:0, iso-16:0) and lipolysis (18:0) and generally followed the expected response to changes in daily rations. Overall, extreme daily fluctuations in FNDF had no cumulative negative effect on production measures over a 21-d period, and daily responses to transient increases in FNDF were less than expected.  相似文献   

18.
The objective of this study was to determine the effect of partial replacement of forage neutral detergent fiber (NDF) with by-product NDF in close-up diets of dairy cattle on periparturient metabolism and performance. Holstein cows (n = 45) and heifers (n = 19) were fed corn silage-based diets containing 1) 30% oat hay, or 2) 15% oat hay and 15% beet pulp from d −21 relative to expected parturition until parturition. After parturition, all animals received the same lactation diet. Animals were group-fed from d −21 to −10 relative to expected parturition and fed individually from d −10 until 14 d in milk. Animals were required to have at least 5 d of prepartum dry matter intake (DMI) data to remain on the study. Data were analyzed as a randomized design and subjected to ANOVA using the MIXED procedure of SAS. Close-up diet did not affect DMI, total tract nutrient digestibility, energy balance, or serum content of nonesterified fatty acids and β-hydroxybutyrate during the last 5 d prepartum. Prepartum body weight and body condition score were similar between treatments. There was no carryover effect of close-up diet on DMI, energy balance, milk yield, body weight, body condition score, or serum content of nonesterified fatty acids and β-hydroxybutyrate during the first 14 d in milk. In summary, partial replacement of forage NDF (oat hay) with by-product NDF (beet pulp) did not affect periparturient metabolism or performance.  相似文献   

19.
为降低传统聚丙烯腈(PAN)纤维的制备成本并实现木质素的高值化利用,对木质素/PAN共混溶液的黏度进行研究,采用湿法纺丝工艺制备了不同比例的木质素/PAN复合纤维,确定其最佳纺丝工艺。借助扫描电子显微镜、差示扫描量热/热重同步分析仪、单纤维物性分析仪、紫外-可见分光光度计等测试手段对复合纤维的结构和性能进行研究。结果表明:相对含量为35%的木质素/PAN纤维仍具有均匀致密的结构,其强度达到 3.81 cN/dtex; 加入木质素后,二者的协同作用赋予了复合纤维良好的热稳定性,该复合纤维在低成本碳纤维和功能纺织材料等领域具有重要的潜在应用价值。  相似文献   

20.
文章从纸页的强度出发,进一步分析了植物纤维在回用过程中品质衰变的原因及其衰变程度的参数表征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号