首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bulk tank milk was standardised to six levels of fat (3·0, 3·2, 3·4, 3·6, 3·8, 4·0%) and similarly to six levels of protein, thus giving a total of 36 combinations in composition. Milk was analyzed for total solids, fat, protein, casein, lactose and somatic cell count and was used to make laboratory-scale cheese. Cheese samples from each batch were assayed for total solids, fat, protein and salt. Losses of milk components in the whey were also determined. Least squares analysis of data indicated that higher protein level in milk was associated with higher protein and lower fat contents in cheese. This was accompanied by lower total solids (higher moisture) in cheese. Inversely, higher fat level in milk gave higher fat and lower protein and moisture contents in cheese. Higher fat level in milk resulted in lower retention of fat in cheese and more fat losses in the whey. Higher protein level in milk gave higher fat retention in cheese and less fat losses in the whey. Regression analysis showed that cheese fat increased by 4·22%, while cheese protein decreased by 2·61% for every percentage increase in milk fat. Cheese protein increased by 2·35%, while cheese fat decreased by 6·14% per percentage increase in milk protein. Milk with protein to fat ratio close to 0·9 would produce a minimum of 50% fat in the dry matter of cheese.  相似文献   

2.
Milk protein concentrate (MPC) contains high concentrations of casein and calcium and low concentrations of lactose. Enrichment of cheese milk with MPC should, therefore, enhance yields and improve quality. The objectives of this study were: 1) to compare pizza cheese made by culture acidification using standardized whole milk (WM) plus skim milk (SM) versus WM plus MPC; and 2) compare cheese made using WM + MPC by culture acidification to that made by direct acidification. The experimental design is as follows: vat 1 = WM + SM + culture (commercial thermophilic lactic acid bacteria), vat 2 = WM + MPC + culture, and vat 3 = WM + MPC + direct acid (2% citric acid). Each cheese milk was standardized to a protein-to-fat ratio of approximately 1.4. The experiment was repeated three times. Yield and composition of cheeses were determined by standard methods, whereas the proteolysis was assessed by urea polyacrylamide gel electrophoresis (PAGE) and water-soluble N contents. Meltability of the cheeses was determined during 1 mo of storage, in addition to pizza making. The addition of MPC improved the yields from 10.34 +/- 0.57% in vat 1 cheese to 14.50 +/- 0.84% and 16.65 +/- 2.23%, respectively, in vats 2 and 3 and cheeses. The percentage of fat and protein recoveries showed insignificant differences between the treatments, but TS recoveries were in the order, vat 2 > vat 3 > vat 1. Most of the compositional parameters were significantly affected by the different treatments. Vat 2 cheese had the highest calcium and lowest lactose contencentrations. Vat 3 cheese had the best meltability. Vat 1 cheese initially had better meltability than vat 2 cheese; however, the difference became insignificant after 28 d of storage at 4 degrees C. Vat 3 cheese had the softest texture and produced large-sized blisters when baked on pizza. The lowest and highest levels of proteolysis were found in vats 2 and 3 cheeses, respectively. The study demonstrates the use of MPC in pizza cheese manufacture with improved yield both by culture acidification as well as direct acidification.  相似文献   

3.
《Journal of dairy science》2022,105(10):7904-7916
Melt and stretch properties in dairy-based imitation mozzarella cheese (IMC) are affected by the amount of intact casein provided by dairy ingredients in the formulation. Rennet casein (RCN) is the preferred ingredient to provide intact casein in a formulation. Ingredients produced using membrane technology, such as milk protein concentrate (MPC) and micellar casein concentrate (MCC), are unable to provide the required functionality. However, the use of transglutaminase (TGase) has potential to modify the physical properties of MPC or MCC and may improve their functionality in IMC. The objective of this study was to determine the effect of TGase-treated MPC and MCC retentates on melt and stretch properties when they are used in IMC and to compare them with IMC made using RCN. The MCC and MPC retentates were produced using 3 different lots of pasteurized skim milk and treated with 3 levels of TGase enzyme: no TGase (control), low TGase: 0.3 units/g of protein, and high TGase: 3.0 units/g of protein. Each of the MCC and MPC treatments was heated to 72°C for 10 min to inactivate TGase and then spray dried. Each MCC, MPC, and RCN powder was then used in an IMC formulation that was standardized to 48% moisture, 21% fat, 20% protein, and 1% salt. The IMC were manufactured in a twin-screw cooker by blending, mixing, and heating various ingredients (4.0 kg). Due to extensive crosslinking, the IMC formulation with the highest TGase level (MCC or MPC) did not form an emulsion. The IMC made from MCC treatments had significantly higher stretchability on pizza compared with their respective MPC treatments. The IMC made from TGase-treated MCC and MPC had significantly lower melt area and significantly higher transition temperature (TT) and stretchability compared with their respective controls. Comparison of IMC made using TGase-treated MCC and MPC to the RCN IMC indicated no difference in TT or texture profile analysis-stretchability; however, the Schreiber melt test area was significantly lower. Our results demonstrated that TGase treatment modifies the melt and stretch characteristics of MCC and MPC in IMC applications, and TGase-treated MPC and MCC can be used to replace RCN in IMC formulations.  相似文献   

4.
Twenty-three Cheddar cheeses were prepared from milks with a protein content of 3.66% (wt/wt) and with different protein-to-fat ratio (PFR) in the range 0.70 to 1.15; the PFR of each milk differed by 0.02. For statistical analysis, the 23 cheeses were divided into 3 PFR groups: low (LPFR; 0.70 to 0.85), medium (MPFR; 0.88 to 1.00) and high (HPFR; 1.01 to 1.15), which were compared using ANOVA. The numbers of PFR values in the LPFR, MPFR, and HPFR groups were 9, 7, and 7, respectively. Data were also analyzed by linear regression analysis to establish potentially significant relationships among the PFR and response variables. Increasing PFR significantly increased the levels of cheese moisture, protein, Ca, and P, but significantly reduced the levels of moisture in nonfat substances, fat-in-DM, and salt-in-moisture. The percentage of milk fat recovered in the LPFR cheese was significantly lower than that in the MPFR or HPFR cheeses. In contrast, the recovery of water from milk to the LPFR cheese was significantly higher than that in the MPFR or HPFR cheeses. Increasing the PFR led to a significant decrease in the actual yield of cheese per 100 kg of milk but a significant increase occurred in the normalized yield of cheese per 100 kg of milk with reference values of fat plus protein (3.4 and 3.3%, wt/wt, respectively). The results demonstrate that alteration of the PFR of cheese milk in the range 0.70 to 1.15 has marked effects on cheese composition, component recoveries, and cheese yield.  相似文献   

5.
The protein content of skim milk was increased from 3.3 to 4.1% (wt/wt) by the addition of a blend of skim milk powder and sodium caseinate (NaCas), in which the weight ratio of skim milk powder to NaCas was varied from 0.8:0.0 to 0.0:0.8. Addition of NaCas increased the levels of nonsedimentable casein (from ~6 to 18% of total casein) and calcium (from ~36 to 43% of total calcium) and reduced the turbidity of the fortified milk, to a degree depending on level of NaCas added. Rennet gelation was adversely affected by the addition of NaCas at 0.2% (wt/wt) and completely inhibited at NaCas ≥0.4% (wt/wt). Rennet-induced hydrolysis was not affected by added NaCas. The proportion of total casein that was nonsedimentable on centrifugation (3,000 × g, 1 h, 25°C) of the rennet-treated milk after incubation for 1 h at 31°C increased significantly on addition of NaCas at ≥0.4% (wt/wt). Heat stability in the pH range 6.7 to 7.2 and ethanol stability at pH 6.4 were enhanced by the addition of NaCas. It is suggested that the negative effect of NaCas on rennet gelation is due to the increase in nonsedimentable casein, which upon hydrolysis by chymosin forms into small nonsedimentable particles that physically come between, and impede the aggregation of, rennet-altered para-casein micelles, and thereby inhibit the development of a gel network.  相似文献   

6.
《Journal of dairy science》2022,105(10):7891-7903
The amount of intact casein provided by dairy ingredients is a critical parameter in dairy-based imitation mozzarella cheese (IMC) formulation because it has a significant effect on unmelted textural parameters such as hardness. From a functionality perspective, rennet casein (RCN) is the preferred ingredient. Milk protein concentrate (MPC) and micellar casein concentrate (MCC) cannot provide the required functionality due to the higher steric stability of casein micelle. However, the use of transglutaminase (TGase) has the potential to modify the surface properties of MPC and MCC and may improve their functionality in IMC. The objective of this study was to determine the effect of TGase-treated MPC and MCC powders on the unmelted textural properties of IMC and compare them with IMC made using commercially available RCN. Additionally, we studied the degree of crosslinking by TGase in MPC and MCC retentates using capillary gel electrophoresis. Three lots of MCC and MPC retentate were produced from pasteurized skim milk via microfiltration and ultrafiltration, respectively, and randomly assigned to 1 of 3 treatments: no TGase (control); low TGase: 0.3 units/g of protein; and high TGase: 3.0 units/g of protein, followed by inactivation of enzyme (72°C for 10 min), and spray drying. Each MCC, MPC, and RCN was then used to formulate IMC that was standardized to 21% fat, 1% salt, 48% moisture, and 20% protein. The IMC were manufactured by blending, mixing, and heating ingredients (4.0 kg) in a twin-screw cooker. The capillary gel electrophoresis analysis showed extensive inter- and intramolecular crosslinking. The IMC formulation using the highest TGase level in MCC or MPC did not form an emulsion because of extensive crosslinking. In MPC with a high level of TGase, whey protein and casein crosslinking were observed. In contrast, crosslinking and hydrolysis of proteins were observed in MCC. The IMC made from MCC powder had significantly higher texture profile analysis hardness compared with the corresponding MPC powder. Further, many-to-one (multiple) comparisons using the Dunnett test showed no significant differences between IMC made using RCN and treatment powders in hardness. Our results demonstrated that TGase treatment causes crosslinking hydrolysis of MCC and MPC at higher TGase levels, and MPC and MCC have the potential to be used as ingredients in IMC applications.  相似文献   

7.
《Journal of dairy science》2023,106(6):3900-3917
This study aimed to evaluate the effects of added jujube polysaccharide (JP) and Lycium barbarum polysaccharide (LBP) on the texture, rheological properties, and microstructure of goat milk cheese. Seven groups of fresh goat milk cheese were produced with 4 levels (0, 0.2, 0.6, and 1%, wt/wt) of JP and LBP. The goat milk cheese containing 1% JP showed the highest water-holding capacity, hardness, and the strongest rheological properties by creating a denser and more stable casein network structure. In addition, the yield of goat milk cheese was substantially improved as a result of JP incorporation. Cheeses containing LBP expressed lower fat content, higher moisture, and softer texture compared with the control cheese. Fourier-transform infrared spectroscopy and low-field nuclear magnetic resonance analysis demonstrated that the addition of JP improved the stability of the secondary protein structure in cheese and significantly enhanced the binding capacity of the casein matrix to water molecules due to strengthened intermolecular interactions. The current research demonstrated the potential feasibility of modifying the texture of goat milk cheese by JP or LBP, available for developing tunable goat milk cheese to satisfy consumer preferences and production needs.  相似文献   

8.
The effect of adding either skim milk or a commercial dry milk protein concentrate (MPC) to whole milk on the composition, yield, and functional properties of Mexican Oaxaca cheese were investigated. Five batches of Oaxaca cheeses were produced. One batch (the control) was produced from whole milk containing 3.5% fat and 9% nonfat solids (SNF). Two batches were produced from milk standardized with skim milk to 2.7 and 1.8% fat, maintaining the SNF content at 9%. In the other 2 batches, an MPC (40% protein content) was used to standardize the milk to a SNF content of 10 and 11%, maintaining the milk fat content at 3.5%. The use of either skim milk or MPC caused a significant decrease in the fat percentage in cheese. The use of skim milk or MPC showed a nonsignificant tendency to lower total solids and fat recoveries in cheese. Actual, dry matter, and moisture-adjusted cheese yields significantly decreased with skim milk addition, but increased with MPC addition. However, normalized yields adjusted to milk fat and protein reference levels did not show significant differences between treatments. Considering skim milk-added and control cheeses, actual yield increased with cheese milk fat content at a rate of 1.34 kg/kg of fat (R = 0.88). In addition, cheese milk fat and SNF:fat ratio proved to be strong individual predictors of cheese moisture-adjusted yield (r2 ≈ 0.90). Taking into account the results obtained from control and MPC-added cheeses, a 2.0-kg cheese yield increase rate per kg of milk MPC protein was observed (R = 0.89), with TS and SNF being the strongest predictors for moisture adjusted yield (r2 ≈ 0.77). Reduced-fat Oaxaca cheese functionality differed from that of controls. In unmelted reduced-fat cheeses, hardness and springiness increased. In melted reduced-fat cheeses, meltability and free oil increased, but stretchability decreased. These changes were related to differences in cheese composition, mainly fat in dry matter and calcium in SNF.  相似文献   

9.
To better exploit manufacturing facilities and standardize cheese quality, milk composition could be standardized by fortifying its protein content with a milk protein concentrate (MPC) addition so avoiding partially skimming the milk. With this aim Mozzarella cheese was obtained adding citric acid into milk standardized at 4% protein and a fat to protein ratio of 1.0. Protein fortification was obtained adding MPC produced by ultrafiltration. Milk, whey, curd, cheese and stretching water were weighed and analysed for total solid, fat and protein content, to measure component recovery and yield. Yield increase (from 13.8% to 16.7%) was due to the higher recovery of the milk total solids and proteins in MPC cheese (48.2 and 78.3%, respectively) and to the slightly higher cheese moisture, obtained with a little modification of the cheese technology when adding MPC. Milk fat in cheese was lower than that reported in literature. Hot water stretching of the curd resulted in very low losses (1%) of protein and considerable losses (14%) of fat for both control and MPC cheeses. The likely reasons of this low recovery are discussed and it can be supposed that a further cheese yield increase is possible by changing the curd stretching procedures.  相似文献   

10.
《Journal of dairy science》2021,104(10):10640-10653
This study evaluated the role of protein concentration and milk protein ingredient [serum protein isolate (SPI), micellar casein concentrate (MCC), or milk protein concentrate (MPC)] on sensory properties of vanilla ready-to-drink (RTD) protein beverages. The RTD beverages were manufactured from 5 different liquid milk protein blends: 100% MCC, 100% MPC, 18:82 SPI:MCC, 50:50 SPI:MCC, and 50:50 SPI:MPC, at 2 different protein concentrations: 6.3% and 10.5% (wt/wt) protein (15 or 25 g of protein per 237 mL) with 0.5% (wt/wt) fat and 0.7% (wt/wt) lactose. Dipotassium phosphate, carrageenan, cellulose gum, sucralose, and vanilla flavor were included. Blended beverages were preheated to 60°C, homogenized (20.7 MPa), and cooled to 8°C. The beverages were then preheated to 90°C and ultrapasteurized (141°C, 3 s) by direct steam injection followed by vacuum cooling to 86°C and homogenized again (17.2 MPa first stage, 3.5 MPa second stage). Beverages were cooled to 8°C, filled into sanitized bottles, and stored at 4°C. Initial testing of RTD beverages included proximate analyses and aerobic plate count and coliform count. Volatile sulfur compounds and sensory properties were evaluated through 8-wk storage at 4°C. Astringency and sensory viscosity were higher and vanillin flavor was lower in beverages containing 10.5% protein compared with 6.3% protein, and sulfur/eggy flavor, astringency, and viscosity were higher, and sweet aromatic/vanillin flavor was lower in beverages with higher serum protein as a percentage of true protein within each protein content. Volatile compound analysis of headspace vanillin and sulfur compounds was consistent with sensory results: beverages with 50% serum protein as a percentage of true protein and 10.5% protein had the highest concentrations of sulfur volatiles and lower vanillin compared with other beverages. Sulfur volatiles and vanillin, as well as sulfur/eggy and sweet aromatic/vanillin flavors, decreased in all beverages with storage time. These results will enable manufacturers to select or optimize protein blends to better formulate RTD beverages to provide consumers with a protein beverage with high protein content and desired flavor and functional properties.  相似文献   

11.
Mozzarella cheese was made from buffalo milk (6% fat) or from partially skimmed buffalo milk (2 and 4% fat) with 0.5 and 1% denatured whey protein. Adding whey protein to buffalo milk decreased rennet coagulation time and curd tension whereas increased curd synaeresis. Addition of whey protein to cheese milk increased the acidity, total solids, ash, salt, salt in moisture, also some nitrogen fractions. The meltability and oiling‐off values increased but the calcium values of mozzarella cheese decreased. The sensory properties of low fat mozzarella cheese were improved by addition of whey protein to the cheese milk.  相似文献   

12.
A limiting factor in using milk protein concentrates (MPC) as a high-quality protein source for different food applications is their poor reconstitutability. Solubilization of colloidal calcium phosphate (CCP) from casein micelles during membrane filtration (e.g., through acidification) may affect the structural organization of these protein particles and consequently the rehydration and functional properties of the resulting MPC powder. The main objective of this study was to investigate the effects of acidification of milk by glucono-δ-lactone (GDL) before ultrafiltration (UF) on the composition, physical properties, solubility, and thermal stability (after reconstitution) of MPC powders. The MPC samples were manufactured in duplicate, either by UF (65% protein, MPC65) or by UF followed by diafiltration (80% protein, MPC80), using pasteurized skim milk, at either the native milk pH (~pH 6.6) or at pH 6.0 after addition of GDL, followed by spray drying. Samples of different treatments were reconstituted at 5% (wt/wt) protein to compare their solubility and thermal stability. Powders were tested in duplicate for basic composition, calcium content, reconstitutability, particle size, particle density, and microstructure. Acidification of milk did not have any significant effect on the proximate composition, particle size, particle density, or surface morphology of the MPC powders; however, the total calcium content of MPC80 decreased significantly with acidification (from 1.84 ± 0.03 to 1.59 ± 0.03 g/100 g of powder). Calcium-depleted MPC80 powders were also more soluble than the control powders. Diafiltered dispersions were significantly less heat stable (at 120°C) than UF samples when dissolved at 5% solids. The present work contributes to a better understanding of the differences in MPC commonly observed during processing.  相似文献   

13.
A mass balance optimization model was developed to determine the value of the κ-casein genotype and milk composition in Cheddar cheese and whey production. Inputs were milk, nonfat dry milk, cream, condensed skim milk, and starter and salt. The products produced were Cheddar cheese, fat-reduced whey, cream, whey cream, casein fines, demineralized whey, 34% dried whey protein, 80% dried whey protein, lactose powder, and cow feed. The costs and prices used were based on market data from March 2004 and affected the results. Inputs were separated into components consisting of whey protein, ash, casein, fat, water, and lactose and were then distributed to products through specific constraints and retention equations. A unique 2-step optimization procedure was developed to ensure that the final composition of fat-reduced whey was correct. The model was evaluated for milk compositions ranging from 1.62 to 3.59% casein, 0.41 to 1.14% whey protein, 1.89 to 5.97% fat, and 4.06 to 5.64% lactose. The κ casein genotype was represented by different retentions of milk components in Cheddar cheese and ranged from 0.715 to 0.7411 kg of casein in cheese/kg of casein in milk and from 0.7795 to 0.9210 kg of fat in cheese/kg of fat in milk. Milk composition had a greater effect on Cheddar cheese production and profit than did genotype. Cheese production was significantly different and ranged from 9,846 kg with a high-casein milk composition to 6,834 kg with a high-fat milk composition per 100,000 kg of milk. Profit (per 100,000 kg of milk) was significantly different, ranging from $70,586 for a high-fat milk composition to $16,490 for a low-fat milk composition. However, cheese production was not significantly different, and profit was significant only for the lowest profit ($40,602) with the κ-casein genotype. Results from this model analysis showed that the optimization model is useful for determining costs and prices for cheese plant inputs and products, and that it can be used to evaluate the economic value of milk components to optimize cheese plant profits.  相似文献   

14.
Theoretical cheese yield can be estimated from the milk fat and casein or protein content of milk using classical formulae, such as the VanSlyke formula. These equations are reliable predictors of theoretical or actual yield based on accurately measured milk fat and casein content. Many cheese makers desire to base payment for milk to dairy farmers on the yield of cheese. In small factories, however, accurate measurement of fat and casein content of milk by either chemical methods or infrared milk analysis is too time consuming and expensive. Therefore, an empirical test to predict cheese yield was developed which uses simple equipment (i.e., clinical centrifuge, analytical balance, and forced air oven) to carry out a miniature cheese making, followed by a gravimetric measurement of dry weight yield. A linear regression of calculated theoretical versus dry weight yields for milks of known fat and casein content was calculated. A regression equation of y = 1.275x + 1.528, where y is theoretical yield and x is measured dry solids yield (r2 = 0.981), for Cheddar cheese was developed using milks with a range of theoretical yield from 7 to 11.8%. The standard deviation of the difference (SDD) between theoretical cheese yield and dry solids yield was 0.194 and the coefficient of variation (SDD/mean x 100) was 1.95% upon cross validation. For cheeses without a well-established theoretical cheese yield equation, the measured dry weight yields could be directly correlated to the observed yields in the factory; this would more accurately reflect the expected yield performance. Payments for milk based on these measurements would more accurately reflect quality and composition of the milk and the actual average recovery of fat and casein achieved under practical cheese making conditions.  相似文献   

15.
《Journal of dairy science》1988,71(7):1711-1719
For 1 yr, monthly milk samples with varying SCC were obtained from 42 Holstein cows. Milk was analyzed for fat, protein, lactose, casein, and SCC and was used for laboratory scale cheese making. Cheese was assayed for fat, protein, total solids, and salt. Losses of milk components in the whey were also determined. Least squares analysis of data, which were adjusted for the effect of milk composition, indicated that levels of SCC in milk were negatively related to fat, protein, total solids, and fat in DM of cheese and positively related to protein in DM and moisture in nonfat substances. An increase of SCC from 100,000 to above 1,000,000/ml resulted in a cheese containing approximately 6.8, 3.6, 4.9, and 1.5% less fat, protein, total solids, and fat in DM, respectively and 4.4 and 2.0% more moisture in nonfat substances and protein in DM. Levels of SCC in milk were positively related to protein losses in the whey. Overall protein losses increased approximately 6.8% for the first million increase in SCC/ml. Regression analyses showed that cheese fat, total solids, fat in DM, and moisture in nonfat substances increased by 4.43, 1.92, 6.50, and 1.07%, respectively, while protein and protein in DM were decreased by 2.37 and 5.36%, respectively, for every percentage increase in milk fat. Cheese protein and protein in DM increased by 2.05 and 4.55%, respectively, while fat, total solids, and fat in DM decreased by 3.19, 1.25, and 4.13, respectively, per percentage increase in milk casein.  相似文献   

16.
The protein and fat content of Dutch bulk milk has been monitored since the 1950s and has increased considerably, by 11 and 20%, respectively, whereas milk yield has more than doubled. The change in protein and fat content of milk is advantageous for the dairy industry, as these are the 2 most economically valuable constituents of milk. Increases in protein and fat content of milk have allowed increases in the yield of various products such as cheese and butter. However, for cheese and other applications where casein micelles play a crucial role in structure and stability, it is not only casein content, but also the properties of the casein micelles that determine processability. Of particular importance herein is the salt partition in milk, but it is unknown whether increased protein content has affected the milk salts and their distribution between casein micelles and milk serum. It was, therefore, the objective of this research to determine the salt composition and protein content for individual cow milk and bulk milk over a period of 1 yr and to compare these data to results obtained during the 1930s, 1950s, and 1960s in the last century. Calcium, magnesium, sodium, potassium, and phosphorus content were determined by inductively coupled plasma atomic emission spectrometry and inorganic phosphate, citrate, chloride, and sulfate content by anion-exchange chromatography in bulk milk and milk ultracentrifugate. In addition, ionic calcium and ionic magnesium concentration were determined by the Donnan membrane technique. We concluded that historical increase in milk yield and protein content in milk have resulted in correlated changes in casein content and the micellar salt fraction of milk. In addition, the essential nutrients, calcium, magnesium, and phosphorus in milk have increased the past 75 yr; therefore, the nutritional value of milk has improved.  相似文献   

17.
Commercial milk protein concentrate (MPC) was used to standardize whole milk for reduced-fat Cheddar cheesemaking. Four replicate cheesemaking trials of three treatments (control, MPC1, and MPC2) were conducted. The control cheese (CC) was made from standardized milk (casein-to-fat ratio, C/F approximately 1.7) obtained by mixing skim milk and whole milk (WM); MPC1 and MPC2 cheeses were made from standardized milk (C/F approximately 1.8) obtained from mixing WM and MPC, except that commercial mesophilic starter was added at the rate of 1% to the CC and MPC1 and 2% to MPC2 vats. The addition of MPC doubled cheese yields and had insignificant effects on fat recoveries (approximately 94% in MPC1 and MPC2 vs. approximately 92% in CC) but increased significantly total solids recoveries (approximately 63% in CC vs. 63% in MPC1 and MPC2). Although minor differences were noted in the gross composition of the cheeses, both MPC1 and MPC2 cheeses had lower lactose contents (0.25 or 0.32%, respectively) than in CC (0.60%) 7 d post manufacture. Cheeses from all three treatments had approximately 10(9) cfu/g initial starter bacteria count. The nonstarter lactic acid bacteria (NSLAB) grew slowly in MPC1 and MPC2 cheeses during ripening compared to CC, and at the end of 6 mo of ripening, numbers of NSLAB in the CC were 1 to 2 log cycles higher than in MPC1 and MPC2 cheeses. Primary proteolysis, as noted by water-soluble N contents, was markedly slower in MPC1 and MPC2 cheeses compared to CC. The concentrations of total free amino acids were in decreasing order CC > MPC2 > MPC1 cheeses, suggesting slower secondary proteolysis in the MPC cheeses than in CC. Sensory analysis showed that MPC cheeses had lower brothy and bitter scores than CC. Increasing the amount of starter bacteria improved maturity in MPC cheese.  相似文献   

18.
Over a 14-month period, bulk tank milk was collected twice a week and was adjusted with cream and skim milk powder to provide six levels each of fat and protein varying from 3·0 to 4·0%. Milk samples were analyzed for total solids, fat, protein, casein, lactose and somatic cell count and were used for laboratory-scale cheesemaking. Data obtained from the milk input and the cheese output were used to determine actual, moisture adjusted, theoretical yield, and efficiency of yield. Least squares analyses of data indicated that higher cheese yields were obtained from higher fat and protein contents in milk. Higher yield efficiency was associated with higher ratios of protein to fat and casein to fat. Regression analysis indicated that a percentage increase in fat content in milk resulted in an increase of 1·23–1·37% in moisture adjusted yield in the different protein levels. For a similar increase of protein in milk, there were 1·80–2·04% increase in moisture adjusted yields in different fat levels.  相似文献   

19.
Recent declines in milk prices in the United States have sparked renewed concern that imports of milk protein concentrates (MPC) are increasingly entering the United States with very low tariff rates and is having an adverse impact on the US dairy industry. Milk protein concentrates are used in the United States in many different products, including the starter culture of cheese, or in nonstandard cheeses such as baker's cheese, ricotta, Feta and Hispanic cheese, processed cheese foods, and nutritional products. One of the difficult aspects of trying to assess the impact of MPC imports on the US dairy industry is to quantify the protein content of these imports. The protein content of MPC imports typically ranges from 40 to 88%. The purpose of this study is to develop a methodology that can be used to estimate the protein content of MPC on a country by country basis. Such an estimate would not only provide information regarding the quantity of protein entering the United States, but would also provide a profile of low- and high-value MPC importers. This is critical for market analysis, since it is the lower valued MPC imports that more directly displaces US-produced skim milk powder.  相似文献   

20.
Different milk protein concentrates (MPC), with protein concentrations of 56, 70, and 90%, were dispersed in water under different treatments (hydration, shear, heat, and overnight storage at 4°C), as well as in a combination of all the treatments in a factorial design. The particle size distribution of the dispersions was then measured to determine the optimal conditions for the dispersion. Heating at 60°C for 30 min with 5 min of shear was chosen as the best condition to dissolve MPC powders. The samples were also characterized for composition, presence of protein aggregates, and ratio of calcium to protein. The total calcium present in MPC increased with increasing concentration of protein; however, the total calcium-to-protein ratio was lower in MPC90 than in MPC56 and MPC70. The level of whey protein denaturation, the presence of κ-casein-whey protein aggregates in the supernatant after centrifugation, and the amount of caseins dissociated from the micelle increased as the protein concentration in the powder increased. The total amount of casein macropeptide released was lower in samples from powders with a higher protein concentration than for MPC56 or the skim milk control. The gelation behavior of reconstituted MPC was tested in systems dispersed in water (5% protein) as well as in systems dispersed in skim milk (6% protein). The gelation time of MPC dispersions was considerably lower and the gel modulus was higher than those of reconstituted skim milk with the same protein concentration. When MPC dispersions were dialyzed against skim milk, a significant decrease in the gelation time and modulus were shown, with a complete loss of gelling functionality in MPC90 dispersed in water. This demonstrated that the ionic equilibrium was key to the functionality of MPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号