首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SHS synthesis of Zn2SnO4-based cermet material from Zn + NiO + SnO2 compacted powder mixtures has been studied. The final product is obtained as a monolithic cylindrical block composed of a ZnO-based outer layer and Zn2SnO4-based central part, in which the metal phase is distributed. The phase composition and microstructure of combustion products have been studied by x-ray phase analysis (XPA), electron microscopy, and microprobe techniques. It is established that the structure of the obtained cermet material has a dramatic effect on their conductivity.  相似文献   

2.
Zinc-titanate ceramics were obtained by initial mechanical activation in a high-energy planetary mill for 15 min followed by sintering at temperatures 900–1100 °C for 2 h. Room temperature far infrared reflectivity spectra for all samples were measured in the range 100–1200 cm−1. The same ionic oscillators were present in the measured spectra, but their intensities increased with the sintering temperature in correlation with the increase in sample density and microstructure changes. Optical parameters were determined for seven oscillators belonging to the spinel structure using the four-parameter model of coupled oscillators. Born effective charges were calculated from the transversal/longitudinal splitting.  相似文献   

3.
The phase formation and reaction kinetics in the TiO2-Cr2O3 system have been studied by x-ray diffraction and electron microscopy. The Cr2O3 solubility in TiO2 has been accurately determined, and the rate parameters of the formation of solid solutions in this system have been evaluated. The results demonstrate that Cr2O3 dissolves in rutile and not in anatase. Cr2O3 markedly reduces the temperature of the anatase-rutile phase transition.  相似文献   

4.
5.
The limits of the LiLaO2-and Li2ZrO3-based solid solutions in the LiLaO2-Li2ZrO3 system have been determined: 0–10 mol % Li2ZrO3 and 0–5 mol % LiLaO2, respectively. We have studied the transport properties (electronic conductivity, temperature and composition dependences of conductivity and activation energy) of lithium lanthanate and the solid solutions in the LiLaO2-Li2ZrO3 system. Conduction in LiLaO2 is likely due to lithium ion transport through a polyhedral network.  相似文献   

6.
This paper presents a physicochemical study of poorly explored compounds in the zirconia-germania system. Reactions between these oxides were investigated by differential scanning calorimetry and thermogravimetry. The morphology of the reaction products was studied by scanning electron microscopy. The reaction products of ZrO2 and GeO2 powders were characterized by quantitative phase analysis. X-ray diffraction and Raman spectroscopy data indicate the formation of the germanates Zr3GeO8 and ZrGeO4. These compounds are shown to be substitutional solid solutions, and their homogeneity ranges are determined. GeO2 dissolution in ZrO2 stabilizes its tetragonal structure.  相似文献   

7.
Composite solid polymeric electrolytes (CSPE) of PVA/PEG/LiClO4 and nanocomposite solid polymeric electrolytes (NSPE) of PVA/PEG/LiClO4/TiO2 films were prepared via solution casting technique using water as the solvent. TiO2 nano powder was prepared from the sulfate process and characterized by the XRD and SEM techniques. The structural interactions of the prepared films were studied by FTIR. Ionic conductivity of the prepared CSPE and NSPE films were measured using AC impedance method at a wide temperature range from 298.15 to 348.15 K in frequency range 50–100 MHz. The measured ionic conductivity results from Nyquist plot were compared with calculations results from equivalent circuit model. The temperature dependence of ionic conductivity of the prepared CSPE and NSPE films was expressed by Arrhenius model and the ionic conductivity activation energy was reported to be 0.86 and 0.89 eV respectively.  相似文献   

8.
This paper reports the synthesis of SnO2-CuO, SnO2-Fe2O3 and SnO2-SbO2 composites of nano oxides and comparative study of humidity sensing on their electrical resistances. CuO, Fe2O3 and SbO2 were added within base material SnO2 in the ratio 1: 0.25, 1: 0.50 and 1: 1. Characterizations of materials were done using SEM and XRD. SEM images show the surface morphology and X-ray diffraction reveals the nanostructure of sensing materials. The pellets were annealed at 200, 400 and 600°C respectively for 3 h and after each step of annealing, observations were carried out. It was observed that as relative humidity (%RH) increases, there was decrease in the resistance of pellet for the entire range of RH. Results were found reproducible. SnO2-SbO2 shows maximum sensitivity for humidity (12 MΩ/%RH) among other composites.  相似文献   

9.
We have performed partial HSO4 substitution in CsH2PO4 and studied the associated structural changes and the proton conductivity of the resultant (CsH2PO4)1 − x (CsHSO4) x solid solutions in the range x = 0.01–0.3. The results indicate that, at room temperature, the solid solutions are disordered. In the range x = 0.01–0.1, they are isostructural with the low-temperature phase of CsH2PO4 (sp. gr. P21/m), and their unit-cell parameters increase with x, whereas in the range x = 0.15–0.3 the solid solutions are isostructural with the high-temperature, cubic phase of CsH2PO4 (Pm3m), and their unit-cell parameter decreases. The conductivity of the (CsH2PO4)1 − x (CsHSO4) x solid solutions with x ≤ 0.3 depends significantly on their composition and increases at low temperatures by up to four orders of magnitude, approaching that of the superionic phase of CsH2PO4 in the range x = 0.15–0.3 because of the hydrogen bond weakening and increased proton mobility. The conductivity of the superionic phase decreases with increasing x by no more than a factor of 1.5–2, and the superionic phase transition, which occurs at 231°C in CsH2PO4, shifts to lower temperatures and disappears for x ≥ 0.15. The activation energy for low-temperature conduction decreases with increasing x: from 0.9 eV in CsH2PO4 to 0.48 eV at x = 0.1.  相似文献   

10.
New nanostructured mesoporous materials of the composition TiO2/ZrO2/SiO2 were prepared by the template sol–gel method using a siloxane–acrylate emulsion as a template. The morphology and structure of these materials and their ability to take up U(VI) were studied. The influence of various factors (ZrO2 content, pH of solution) on the sorption properties was studied. The suggested materials allow efficient sorption of U(VI) from sulfate solutions with low U(VI) concentrations and can be used in final purification processes.  相似文献   

11.
Nanostructured tin dioxide (SnO2) film was deposited on glass substrate by thermal evaporation of tin metal followed by thermal oxidation at 600 °C for 2 h. XRD investigation confirms that grown film is crystalline tetragonal rutile. The average optical transmittance of the film was as high as 90%. The optical band gap of the nanostructured SnO2 was estimated from transmittance data and found to be 3.4 eV. The variation of electrical conductivity with temperature was investigated. The root mean square (RMS) roughness and topography of the film were investigated by atomic force microscopy and found to be 2 nm with grain size of 17 nm.  相似文献   

12.
Tricalcium phosphate (TCP) powders synthesised using the Ca(NO3)2 and Ca(OH)2 routes were doped with TiO2, ZrO2 and Al2O3 in order to increase their compressive strength. An ultimate compressive strength (UCS) of 255 ± 6 MPa was achieved for approximately 10 vol% TiO2 doping compared to 30 ± 3 MPa for an un-doped control processed and tested in the same manner. Higher levels of TiO2 doping resulted in smaller increases in UCS with 30 and 50 vol% achieving 213 ± 9 and 178 ± 15 MPa, respectively. Very small amounts of Al2O3 doping (< 0.5 vol%) also resulted in a stronger materials. However, under the processing conditions employed, higher levels of Al2O3 and ZrO2 doping resulted in no beneficial effect on the UCS. Polyvinyl alcohol (PVA) was used as binding agent to facilitate processing. As expected, higher levels of PVA were associated with smaller increases in UCS. Powders synthesised using the Ca(OH)2 route had smaller particle size and resulted in larger increases in UCS compared to the Ca(NO3)2-synthesised powders. Although some powders contained α and β-TCP phases, no other calcium phosphate, CaO, CaTiO3 or CaZrO3 phases were detected. In conclusion, a significant increase in the UCS of TCP was achieved by doping with approximately 10 vol% TiO2 which is expected to have little or no effect on the bioactivity or bioresorbability of the material.  相似文献   

13.
Ceramic samples based on ZnTa2O6 and ZnTa2O6–MO2 (M = Ti, Zr) systems have been obtained by the solid state ceramic route. The phase composition and microstructure of samples were investigated. The effect of the aliovalent substitution of ions Zn2+ and Ta5+ by M4+ (M = Ti, Zr) in the structure of ZnTa2O6 on microwave dielectric properties of ceramics was studied. The way of the compensation of the positive temperature coefficient of resonant frequency of dielectric resonators based on ZnTa2O6 ceramics with using the aliovalent substitution of cations was proposed. Dielectric resonators with the high temperature stability of the resonant frequency and high dielectric properties in the microwave range based on the ZnTa2O6–ZrO2 system were obtained for application in electronics.  相似文献   

14.
Combining plasma electrolytic oxidation and extract pyrolysis, we have produced composite oxide coatings on titanium, which exhibit bright luminescence in the red spectral region. The present results and data in the literature suggest that combining these approaches is potentially attractive for the ability to produce composite coatings with various properties on the surface of valve metals and alloys.  相似文献   

15.
ZnO + Zn2TiO4 thin films were obtained by the sol–gel method using precursor solutions with different Ti/Zn ratios in the 0.18–2.13 range. The films were deposited on glass substrates and annealed in an open atmosphere at 550 °C. The oxide was characterized by X-ray diffraction and photoacoustic (PA) spectroscopy. The films were constituted of polycrystalline ZnO for the lowest Ti/Zn ratio (0.18), polycrystalline Zn2TiO4 for the 0.70 and 1.0 ratios, and mixes of both oxides for the intermediate ratios (0.32 and 0.50). For the highest ratios studied (1.44 and 2.13), the films were amorphous. The energy band gap (Eg) values were determined from optical absorption spectra, measured by means of the PA technique spectra. Eg varied in the 3.15 eV (ZnO) to 3.70 eV (Zn2TiO4) range.  相似文献   

16.
Raman spectroscopy and X-ray diffraction (XRD) methods were applied to characterize ZrO2 and HfO2 films grown by atomic layer deposition (ALD) on silicon substrates in chloride- based processes. A dramatic enhancement in spectral quality of Raman data resulted from the use of the film’s freestanding edges for experimental runs between 80 and 800 cm−1. Both techniques detected a preferential formation of a metastable phase in ZrO2 and HfO2 films at 500 and 600C, respectively, during the initial stages of ALD. In the case of ZrO2 films this phase was identified as the tetragonal polymorph of ZrO2 (t-ZrO2). XRD and Raman spectroscopy data showed that, in contrast to the monoclinic phase (m-ZrO2), the absolute amount of t-ZrO2 remained approximately constant while its relative amount decreased with the increase of the film thickness from 56 to 660 nm. Neither XRD nor Raman spectroscopy allowed unambiguous identification of the metastable phase formed in otherwise monoclinic HfO2 films.  相似文献   

17.
The sintering behavior of Magnesium Orthostannate (Mg2SnO4) by Magnesium oxide (MgO) and tin oxide (SnO2) was investigated. Mg2SnO4 compound was formed by traditional solid state reaction (SSR) at elevated temperatures over a range of 600 C–1300 C. X-ray studies have revealed that the resulting, as-fired, compound is polycrystalline composed of an inverse spinel-structure grains separated partially by porosity. However it failed to detect any phase change as a result of annealing. Scanning electron microscope (SEM) was employed to follow-up any change in the morphology throughout the sintering and reduction processes. Thermal property Differential Scanning Calorimetry (DSC) revealed that reduction takes place at a temperature between 400 and 600 C, depending on the concentration of H2 in the atmosphere in accordance with the X-ray studies. The technique employed has also demonstrated the stability of reduced species in typical atmospheres and working conditions.  相似文献   

18.
We have studied tetragonal scheelite-like solid solutions in the ternary system Na2MoO4-CaMoO4-Ce2/3MoO4: Na 0.7Cay Ce1.1 ? 2y/3 (MoO4)2 (0 ≤ y ≤ 0.6) and Na0.3 CazCe1.23? 2z/3 (MoO4)2 (0 ≤ z ≤ 1.4). The solid solutions melt congruently at temperatures from 1100 to 1200°C. Their lattice parameters have been determined. Using reflection spectra, we evaluated the color parameters of all the samples studied.  相似文献   

19.
Vanadium oxide (V2O5) mixed titanium oxide (TiO2) and zirconium oxide (ZrO2) thin films were fabricated on glass substrates (corning 2947) and on indium tin oxide (ITO) coated glass substrates by sol gel spin coating process. Their optical, structural and electrochromic properties were investigated. The results were compared with pure TiO2 and ZrO2 thin films. Mixture of V2O5 with both types of film reduces the transmittance at the higher wavelengths. The refractive index of the V2O5 mixed TiO2 and ZrO2 films increases when compared with pure TiO2 and ZrO2 films. AFM images demonstrate no significant topographical changes for V2O5 mixed TiO2 whereas for V2O5 mixed ZrO2 films a topographical change is observed. V2O5 mixed TiO2 showed slight increase in their charge capacity.  相似文献   

20.
SnO2 micromaterials were synthesized via hydrothermal method at a temperature of 200 °C for 24 h without employment of catalysts or surfactants. With the dosage of the precursor (SnCl4) increasing, variable microstructures of SnO2, ophiopogon japonicas-like micrograsses, microcones, microflowers and microcorals, were obtained. The as-prepared SnO2 samples were characterized by X-ray diffraction (XRD), scanning electron microscope and energy dispersive spectrometer respectively. XRD results indicated the as-grown SnO2 samples have a tetragonal rutile structure. Among those different morphologies, micrograsses SnO2 exhibited the best field emission performance with a low turn-on field of 1.05 V/µm and a high field enhancement factor of 3880. The results are quite comparable to reported data and strongly imply the micrograsses SnO2 is a potential material for fabricating efficient emitters of display devices and vacuum electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号