共查询到17条相似文献,搜索用时 78 毫秒
1.
电子商务推荐系统中的协同过滤推荐 总被引:11,自引:1,他引:11
电子商务推荐系统中协同过滤已成为目前应用最广泛、最成功的推荐方法。它利用相似用户购买行为也可能相似的特性进行推荐。介绍了与其他方法比较协同过滤方法的优点,然后说明了一些主要的协同过滤实现方法,指出了还需改进和完善的地方以及未来研究的方向。 相似文献
2.
个人对个人电子商务(customer to customer,C2C)是目前主流的电子商务模式之一,为解决C2C电子商务网站中特殊的推荐问题,对传统的二维协同过滤方法进行了扩展,提出了能进行卖家和商品组合推荐的三维协同过滤推荐方法,并在此基础上设计了C2C电子商务推荐系统,阐述了该系统的基本架构和推荐过程中的关键运算.该系统利用卖家属性计算卖家相似度,并依据销售关系和卖家相似度对评分数据集进行填充,以解决三维评分数据的稀疏问题;采用协同过滤思想,利用历史评分计算买家相似度,获取最近邻并预测未知评分,最终将预测评分最高的卖家和商品组合推荐给目标买家.实验结果表明,该系统具有较好的推荐效果. 相似文献
3.
介绍了协同过滤算法,并对算法进行了改进,解决了用户稀疏的情况下传统算法的不足,同时通过引入评分阈值,显著提高了个性化协同过滤算法的推荐精度。 相似文献
4.
5.
6.
基于聚类分析的电子商务推荐系统 总被引:7,自引:2,他引:7
协同过滤技术可以通过分析客户群共同的消费品味来形成推荐。数据稀缺性问题是协同过滤技术面临的主要挑战。文章利用ROCK聚类算法提出了一种基于协同过滤技术的推荐系统模型,该模型可以有效地解决基于协同推荐的数据稀缺性问题。 相似文献
7.
本文主要从基本思想、算法步骤等方面对基于用户的协同过滤推荐算法和基于项目的协同过滤推荐算法进行了详细介绍,并对其存在的问题进行了总结。 相似文献
8.
9.
根据目前电子商务网站中商品个性化推荐的现状,重点分析了比较常用的一种推荐方法——协同过滤推荐方法,发现了目前协同过滤算法在应用中所面临的挑战和问题,主要包括:推荐质量低、推荐效率低、数据稀疏性、冷启动等问题。针对这些问题本文提出了一种基于用户兴趣度的聚类分析协同过滤算法,有效的解决了目前算法中存在的数据稀疏性等问题,通过实验数据的分析对比,证明了算法的合理性和有效性。 相似文献
10.
随着互联网和信息计算的飞速发展,衍生了海量数据,我们已经进入信息爆炸的时代。网络中各种信息量的指数型增长导致用户想要从大量信息中找到自己需要的信息变得越来越困难,信息过载问题日益突出。推荐系统在缓解信息过载问题中起着非常重要的作用,该方法通过研究用户的兴趣偏好进行个性化计算,由系统发现用户兴趣进而引导用户发现自己的信息需求。目前,推荐系统已经成为产业界和学术界关注、研究的热点问题,应用领域十分广泛。在电子商务、会话推荐、文章推荐、智慧医疗等多个领域都有所应用。传统的推荐算法主要包括基于内容的推荐、协同过滤推荐以及混合推荐。其中,协同过滤推荐是推荐系统中应用最广泛最成功的技术之一。该方法利用用户或物品间的相似度以及历史行为数据对目标用户进行推荐,因此存在用户冷启动和项目冷启动问题。此外,随着信息量的急剧增长,传统协同过滤推荐系统面对数据的快速增长会遇到严重的数据稀疏性问题以及可扩展性问题。为了缓解甚至解决这些问题,推荐系统研究人员进行了大量的工作。近年来,为了提高推荐效果、提升用户满意度,学者们开始关注推荐系统的多样性问题以及可解释性等问题。由于深度学习方法可以通过发现数据中用户和项目之间的非线性关系从而学习一个有效的特征表示,因此越来越受到推荐系统研究人员的关注。目前的工作主要是利用评分数据、社交网络信息以及其他领域信息等辅助信息,结合深度学习、数据挖掘等技术提高推荐效果、提升用户满意度。对此,本文首先对推荐系统以及传统推荐算法进行概述,然后重点介绍协同过滤推荐算法的相关工作。包括协同过滤推荐算法的任务、评价指标、常用数据集以及学者们在解决协同过滤算法存在的问题时所做的工作以及努力。最后提出未来的几个可研究方向。 相似文献
11.
12.
为了满足年轻人在交友择偶方面需求,越来越多的征友网站应运而生.随着网站用户不断增加,根据用户提交的交友要求来进行推荐,往往结果数以千计或万计,要从这里面发现用户感兴趣的对象变得非常困难,我们将协同过滤算法引入交友推荐系统,并设计了一个个性化相似项目的协同过滤算法,根据用户的兴趣进行项目最近邻居查找,大大提高了用户对搜索结果的满意度. 相似文献
13.
为了满足年轻人在交友择偶方面需求,越来越多的征友网站应运而生。随着网站用户不断增加,根据用户提交的交友要求来进行推荐,往往结果数以千计或万计,要从这里面发现用户感兴趣的对象变得非常困难,我们将协同过滤算法引入交友推荐系统,并设计了一个个性化相似项目的协同过滤算法,根据用户的兴趣进行项目最近邻居查找,大大提高了用户对搜索结果的满意度。 相似文献
14.
系统规模的逐步扩大和用户兴趣的发展变化给传统协同过滤推荐系统带来了实时性减弱和准确性降低的问题。基于K—Means用户聚类的协同过滤技术虽然能在一定程度上解决这两个问题,算法本身却带有局部最优的缺陷。在保证实时性的前提下,为克服K—Means算法的缺陷,提出使用AntClass蚁群算法对用户聚类。同时提出将用户评分看作数据流,利用金字搭时间框架预处理数据,从而体现用户兴趣随时间的变化。于是,将AntClass蚁群算法和利用金字塔时间框架预处理过的数据流相结合,最终形成文中的AntStream算法。实验表明,AntStream算法不仅改善了传统协同过滤推荐系统的实时性问题,而且更大程度提高了推荐质量。 相似文献
15.
由于传统基于均方差的协同过滤算法(MSD)计算相似性时仅考虑评分向量间均方差值,导致其推荐性能不理想,针对这个问题,提出融合评分向量间余弦值和均方差值的改进均方差协同过滤算法(Improved MSD, IMSD)。通过在2个Movielens数据集上进行实验表明,IMSD算法较MSD算法的推荐准确度有所提高。更为重要的是,将IMSD算法进行推广应用,也能够取得较好的效果。本文将其应用于改进另外2种算法,即JAC_MSD和AC_MSD算法,并提出了2种相应的JAC_IMSD和AC_IMSD算法,发现算法的推荐准确度都有所提高。在所研究的几种算法中,AC_IMSD算法推荐准确度最优。 相似文献
16.