首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CD45 protein tyrosine phosphatase (PTPase) has been shown to regulate the activity of Lck and Fyn protein tyrosine kinases in T cells. However, it is not clear that these constitute the only CD45 substrates. Moreover, the manner by which PTPase activity and substrate recruitment are regulated, is poorly understood. Previous in vitro studies suggest that the first cytoplasmic PTPase domain (D1) of CD45 is the active PTPase, which may be regulated by an enzymatically inactive second PTPase domain (D2). However, the function of CD45 D2 in vivo is unknown. In this study, reconstitution of CD45(-) T cells with specific CD45 PTPase mutants allowed demonstration of a critical role for D2 in TCR-mediated interleukin (IL)-2 production. Specifically, replacement of CD45 D2 with that of the LAR PTPase to form a CD45/LAR:D2 chimera, abrogates CD45-dependent IL-2 production. This effect cannot be accounted for by loss of PTPase activity per se. The expression of D1 substrate-trapping mutants reveals an in vivo interaction between CD45 and TCR-zeta that is dependent on CD45 D2. Thus, cells expressing CD45 lacking D2 exhibit abnormal TCR-mediated signaling characterized by hyperphosphorylation of zeta and deficient ZAP-70 phosphorylation. These data suggest an essential role for CD45 D2 in TCR-regulated IL-2 production through substrate recruitment of the zeta chain.  相似文献   

2.
Transgenic mice which overexpress kinase-deficient human insulin receptors in muscle were used to study the relationship between insulin receptor tyrosine kinase and the in vivo activation of several downstream signaling pathways. Intravenous insulin stimulated insulin receptor tyrosine kinase activity by 7-fold in control muscle versus < or = 1.5-fold in muscle from transgenic mice. Similarly, insulin failed to stimulate tyrosyl phosphorylation of receptor beta-subunits or insulin receptor substrate 1 (IRS-1) in transgenic muscle. Insulin substantially stimulated IRS-1-associated phosphatidylinositol (PI) 3-kinase in control versus absent stimulation in transgenic muscles. In contrast, insulin-like growth factor 1 modestly stimulated PI 3-kinase in both control and transgenic muscle. The effects of insulin to stimulate p42 mitogen-activated protein kinase and c-fos mRNA expression were also markedly impaired in transgenic muscle. Specific immunoprecipitation of human receptors followed by measurement of residual insulin receptors suggested the presence of hybrid mouse-human heterodimers. In contrast, negligible hybrid formation involving insulin-like growth factor 1 receptors was evident. We conclude that (i) transgenic expression of kinase-defective insulin receptors exerts dominant-negative effects at the level of receptor auto-phosphorylation and kinase activation; (ii) insulin receptor tyrosine kinase activity is required for in vivo insulin-stimulated IRS-1 phosphorylation, IRS-1-associated PI 3-kinase activation, phosphorylation of mitogen-activated protein kinase, and c-fos gene induction in skeletal muscle; (iii) hybrid receptor formation is likely to contribute to the in vivo dominant-negative effects of kinase-defective receptor expression.  相似文献   

3.
We have studied the involvement of murine c-Crk, an SH2/SH3 containing adaptor protein, in signaling pathways stimulated by different receptor tyrosine kinases. We show here that c-Crk is associated with components of insulin- and PDGF-dependent signaling pathways. Insulin treatment of murine myoblast cells induces the formation of stable complex of endogenous c-Crk with insulin receptor substrate-1 (IRS-1) mediated via the SH2 domain of Crk. The ligand dependent physical association of c-Crk with IRS-1 is direct. However IRS-1 is also co-precipitated with c-Crk from quiescent L6 cells. The association of IRS-1 with c-Crk in quiescent cells is probably not direct since Far Western blot analysis did not reveal the binding of neither SH2 domain nor amino-terminal SH3 domain of c-Crk to IRS-1 from unstimulated cells. We also show that PDGF treatment of murine myoblast cells induces association of c-Crk with the PDGF receptor and tyrosine phosphorylation of c-Crk. Overexpression of c-Crk enhanced insulin- but not PDGF-induced activation of MAP kinases when compared to parental cell lines. Thus, the formation of the direct IRS-1/Crk complex appears to be crucial for Crk-mediated insulin-induced activation of MAP kinase, whereas Crk is probably involved in other PDGF-induced responses. These data provide support to the hypothesis that insulin and PDGF employ different mechanisms for activation of MAP kinase cascade.  相似文献   

4.
Protein-tyrosine phosphatases (PTPases) play a key role in the regulation of insulin action. In order to identify PTPases in skeletal muscle, the major site of insulin-mediated glucose disposal in vivo, we purified PTPases from rat muscle tissue fractions by a series of column chromatographic techniques. PTPase activities were assayed by measuring the dephosphorylation of a rat insulin receptor kinase domain, derivatized lysozyme and p-nitrophenylphosphate, and the enzymes were further characterized by immunoblotting. Of the total PTPase activity in muscle homogenates, 51-64% was localized to the solubilized particulate fraction, with the specific PTPase activity 3.3-fold and 5.6-fold higher in the particulate fraction towards RCM-lysozyme or the insulin receptor, respectively. The major peak (> 75%) of PTPase activity in the particulate fraction was purified further to 700-fold; 75% of this activity passed through a Blue-3GA column and revealed immunoreactivity for both LAR and SH-PTP2. PTPase activity retained on the Blue-3GA column contained PTPase1B. The major peak (> 70%) from muscle cytosol was further purified to 1500-fold. After the Blue-3GA step, immunoblotting revealed both SH-PTP2 and PTPase1B in the cytosol fraction, but LAR was absent from this fraction. LRP (RPTP-alpha) was not detected by blotting the PTPase activities from the purified particulate or cytosol fractions. Immunodepletion studies demonstrated that LAR, SH-PTP2 and PTPase1B were quantitatively major PTPase activities in the initial muscle homogenate, together accounting for over 70% of the total activity towards RCM-lysozyme. These studies provide insight into the relative abundance and subcellular distribution of specific PTPases in muscle tissue that are involved in the regulation of reversible tyrosine phosphorylation in this tissue.  相似文献   

5.
Tumor necrosis factor (TNF)-alpha plays a central role in the state of insulin resistance associated with obesity. It has previously been shown that one important mechanism by which TNF-alpha interferes with insulin signaling is through the serine phosphorylation of insulin receptor substrate-1 (IRS-1), which can then function as an inhibitor of the tyrosine kinase activity of the insulin receptor (IR). However, the receptors and the signaling pathway used by TNF-alpha that mediate the inhibition of IR activity are unknown. We show here that human TNF-alpha, which binds only to the murine p55 TNF receptor (TNFR), is as effective at inhibiting insulin-dependent tyrosine phosphorylation of IR and IRS-1 in adipocytes and myeloid 32D cells as murine TNF-alpha, which binds to both p55 TNFR and p75 TNFR. Likewise, antibodies that are specific agonists for p55 TNFR or p75 TNFR demonstrate that stimulation of p55 TNFR is sufficient to inhibit insulin signaling, though a small effect can also be seen with antibodies to p75 TNFR. Exogenous sphingomyelinase and ceramides, known to be formed by activation of p55 TNFR, inhibit IR and IRS-1 tyrosine phosphorylation and convert IRS-1 into an inhibitor of IR tyrosine kinase in vitro. Myeloid 32D cells expressing IR and IRS-1 are sensitive to this inhibition, but cells expressing IR and IRS-2 are resistant, pointing to an important difference in the biological function between IRS-1 and IRS-2. These data strongly suggest that TNF-alpha inhibits insulin signaling via stimulation of p55 TNFR and sphingomyelinase activity, which results in the production of an inhibitory form of IRS-1.  相似文献   

6.
7.
Freshly isolated adult rat ventricular cardiomyocytes have been used to characterize the action profile of the new thiazolidinedione antidiabetic drug MCC-555. Preincubation of cells with the compound (100 microM for 30 min or 10 microM for 2 h) did not modify basal 3-O-methylglucose transport, but produced a marked sensitizing effect (2- to 3-fold increase in insulin action at 3 x 10(-11) M insulin) and a further enhancement of maximum insulin action (1.8-fold). MCC-555 did not modulate autophosphorylation of the insulin receptor and tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). However, insulin action (10(-10) and 10(-7) M) on IRS-1-associated phosphatidylinositol (PI) 3-kinase activity was enhanced 2-fold in the presence of MCC-555. Association of the p85 adapter subunit of PI 3-kinase to IRS-1 was not modified by the drug. Immunoblotting experiments demonstrated expression of the peroxisomal proliferator-activated receptor-gamma in cardiomyocytes reaching about 30% of the abundance observed in adipocytes. The insulin-sensitizing effect of MCC-555 was lost after inhibition of protein synthesis by preincubation of the cells with cycloheximide (1 mM; 30 min). Cardiomyocytes from obese Zucker rats exhibited a completely blunted response of glucose transport at 3 x 10(-11) M insulin. MCC-555 ameliorates this insulin resistance, producing a 2-fold stimulation of glucose transport, with maximum insulin action being 1.6-fold higher than that in control cells. This drug effect was paralleled by a significant dephosphorylation of IRS-1 on Ser/Thr. In conclusion, MCC-555 rapidly sensitizes insulin-stimulated cardiac glucose uptake by enhancing insulin signaling resulting from increased intrinsic activity of PI 3-kinase. Acute activation of protein expression leading to a modulation of the Ser/Thr phosphorylation state of signaling proteins such as IRS-1 may be underlying this process. It is suggested that MCC-555 may provide a causal therapy of insulin resistance by targeted action on the defective site in the insulin signaling cascade.  相似文献   

8.
Insulin-like growth factor I (IGF-I) is a potent neurotropic factor promoting the differentiation and survival of neuronal cells. SH-SY5Y human neuroblastoma cells are a well characterized in vitro model of nervous system growth. We report here that IGF-I stimulated the tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and insulin receptor substrate-2 (IRS-2) in a time- and concentration-dependent manner. These cells lacked IRS-1. After being tyrosine phosphorylated, IRS-2 associated transiently with downstream signaling molecules, including phosphatidylinositol 3-kinase (PI 3-K) and Grb2. Treatment of the cells with PI 3-K inhibitors (wortmannin and LY294002) increased IGF-I-induced tyrosine phosphorylation of IRS-2. We also observed a concomitant increase in the mobility of IRS-2, suggesting that PI 3-K mediates or is required for IRS-2 serine/threonine phosphorylation, and that this phosphorylation inhibits IRS-2 tyrosine phosphorylation. Treatment with PI 3-K inhibitors induced an increased association of IRS-2 with Grb2, probably as a result of the increased IRS-2 tyrosine phosphorylation. However, even though the PI 3-K inhibitors enhanced the association of Grb2 with IRS-2, these compounds suppressed IGF-I-induced mitogen-activated protein kinase activation and neurite outgrowth. Together, these results indicate that although PI 3-K participates in a negative regulation of IRS-2 tyrosine phosphorylation, its activity is required for IGF-IR-mediated mitogen-activated protein kinase activation and neurite outgrowth.  相似文献   

9.
To study the interaction between insulin receptor (IR) and insulin-like growth factor-I (IGF-I) receptor (IGF-IR) tyrosine kinases, we examined IGF-I action in Rat-1 cells expressing a naturally occurring tyrosine kinase-deficient mutant IR (Asp 1048 IR). IGF-I normally stimulated receptor autophosphorylation, IRS-I phosphorylation, and glycogen synthesis in cells expressing Asp 1048 IR. However, the Asp 1048 IR inhibited IGF-I-stimulated thymidine uptake by 45% to 52% and amino acid uptake (aminoisobutyric acid [AIB]) by 58% in Asp 1048 IR cells. Furthermore, IGF-I-stimulated tyrosine kinase activity toward synthetic polymers, Shc phosphorylation, and mitogen-activated protein (MAP) kinase activity was inhibited. The inhibition of mitogenesis and AIB uptake was restored with the amelioration of the impaired tyrosine kinase activity and Shc phosphorylation by the introduction of abundant wild-type IGF-IR in Asp 1048 IR cells. These results suggest that the Asp 1048 IR causes a dominant negative effect on IGF-IR in transmitting signals to Shc and MAP kinase activation, which leads to decreased IGF-I-stimulated DNA synthesis, and that the kinase-defective insulin receptor does not affect IGF-I-stimulated IRS-I phosphorylation, which leads to the normal IGF-I-stimulated glycogen synthesis.  相似文献   

10.
B cell Ag receptor (BCR) signaling occurs via tyrosine phosphorylation of CD79a and CD79b ITAMs, leading to recruitment and activation of Lyn and Syk tyrosine kinases and subsequent downstream events. CD45 expression is required for BCR triggering of certain of these downstream events, such as calcium mobilization and p21ras activation. However, the site in the BCR signaling cascade at which CD45 impinges is poorly defined. To address this question, we have studied CD45 function in the CD45-deficient (CD45-) and CD45-reconstituted (CD45+) J558L mu m3 plasmacytoma. In both CD45+ and CD45- cells, Ag stimulation led to CD79a and CD79b tyrosine phosphorylation as well as Syk tyrosine phosphorylation, recruitment to the receptors, and activation. In contrast to CD45+ cells, Lyn exhibited high basal tyrosine phosphorylation in the CD45- cells and was not further phosphorylated upon Ag stimulation. Mapping studies indicated that the observed constitutive phosphorylation of Lyn reflects phosphorylation of its C-terminal tyrosine, Y508, at high stoichiometry. Constitutively Y508-phosphorylated Lyn was neither recruited to the BCR nor activated upon Ag stimulation. Moreover, CD79a-ITAM phosphopeptides failed to bind Lyn from the CD45- cells. Thus, Y508 phosphorylation of Lyn occurs in the absence of cellular CD45 expression and appears to render the kinase unable to associate with the phosphorylated receptor complex via its Src homology 2 domain and to participate in signal propagation. Surprisingly, in view of previous findings implicating Src family kinases in ITAM phosphorylation, the data indicate that Ag-induced CD79a and CD79b tyrosine phosphorylation and Syk recruitment and activation can occur in the absence of CD45 expression and, hence, Src-family kinase activation.  相似文献   

11.
Insulin and insulin-like growth factor-1 (IGF-1) treatment of cells overexpressing the insulin receptor or the IGF-1 receptor promotes phosphorylation and activation of Janus kinases JAK-1 and JAK-2 but not of TYK-2. With insulin, we observed maximal phosphorylation of JAK-1 within 2 min (5.2 +/- 0.6-fold) and maximal phosphorylation of JAK-2 within 10 min (2.4 +/- 0.6-fold). In cells incubated with IGF-1, we found maximal phosphorylation of JAK-2 within 2 min (1.9 +/- 0.2-fold) and of JAK-1 within 5 min (4.5 +/- 0.4-fold). The JAKs from insulin- or IGF-1-stimulated cells were activated, as shown by their autophosphorylation in vitro. Moreover, they were able to phosphorylate in vitro native insulin receptor substrate (IRS)-1 and a fragment of IRS-2 (GST-IRS-2591-786). Comparison of 32P-peptide maps of IRS-1 phosphorylated in vitro by the insulin receptor vs. JAK-1 showed the occurrence of different phosphopeptides, suggesting that different sites are likely to be phosphorylated by the two kinases. Finally, coprecipitation of receptors and JAK-1 was seen, and phosphorylation of both receptors was found to be necessary for receptor binding to JAK-1. Two domains of JAK- 1 are involved in the formation of the complex between receptor and JAK-1, i.e. the N-terminal portion containing JH7 and JH6 domains, and the C-terminal kinase domain (JH1 domain). Taking our data together, we conclude that: 1) insulin and IGF-1 lead to phosphorylation and activation of JAK-1 and JAK-2 in intact cells; 2) phosphorylation of IRS-I by JAK-1 seems to occur on sites different from those phosphorylated by the insulin receptor; 3) JAK-1 interacts directly with phosphorylated insulin and IGF-1 receptors; and 4) the JH7-JH6 and JH1 domains of JAK-1 are responsible for the interaction with insulin and IGF-1 receptors.  相似文献   

12.
The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an "unregulated" mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance.  相似文献   

13.
Growth hormone (GH) and prolactin (PRL) binding to their receptors, which belong to the cytokine receptor superfamily, activate Janus kinase (JAK) 2 tyrosine kinase, thereby leading to their biological actions. We recently showed that GH mainly stimulated tyrosine phosphorylation of epidermal growth factor receptor and its association with Grb2, and concomitantly stimulated mitogen-activated protein kinase activity in liver, a major target tissue. Using specific antibodies, we now show that GH was also able to induce tyrosine phosphorylation of insulin receptor substrate (IRS)-1/IRS-2 in liver. In addition, the major tyrosine-phosphorylated protein in anti-p85 phosphatidylinositol 3-kinase (PI3-kinase) immunoprecipitate from liver of wild-type mice was IRS-1, and IRS-2 in IRS-1 deficient mice, but not epidermal growth factor receptor. These data suggest that tyrosine phosphorylation of IRS-1 may be a major mechanism for GH-induced PI3-kinase activation in physiological target organ of GH, liver. We also show that PRL was able to induce tyrosine phosphorylation of both IRS-1 and IRS-2 in COS cells transiently transfected with PRLR and in CHO-PRLR cells. Moreover, we show that tyrosine phosphorylation of IRS-3 was induced by both GH and PRL in COS cells transiently transfected with IRS-3 and their cognate receptors. By using the JAK2-deficient cell lines or by expressing a dominant negative JAK2 mutant, we show that JAK2 is required for the GH- and PRL-dependent tyrosine phosphorylation of IRS-1, -2, and -3. Finally, a specific PI3-kinase inhibitor, wortmannin, completely blocked the anti-lipolytic effect of GH in 3T3 L1 adipocytes. Taken together, the role of IRS-1, -2, and -3 in GH and PRL signalings appears to be phosphorylated by JAK2, thereby providing docking sites for p85 PI3-kinase and activating PI3-kinase and its downstream biological effects.  相似文献   

14.
Activation of the endogenous protein kinase Cs in human kidney fibroblast (293) cells was found in the present study to inhibit the subsequent ability of insulin to stimulate the tyrosine phosphorylation of an expressed insulin receptor substrate-1. This inhibition was also observed in an in vitro phosphorylation reaction if the insulin receptor and its substrate were both isolated from cells in which the protein kinase C had been activated. To test whether serine phosphorylation of the insulin receptor substrate-1 was contributing to this process, serine 612 of this molecule was changed to an alanine. The insulin-stimulated tyrosine phosphorylation and the associated phosphatidylinositol 3-kinase activity of the expressed mutant were found to be comparable to those of the expressed wild-type substrate. However, unlike the wild-type protein, activation of protein kinase C did not inhibit the insulin-stimulated tyrosine phosphorylation of the S612A mutant nor its subsequent association with phosphatidylinositol 3-kinase. Tryptic peptide mapping of in vivo labeled IRS-1 and the S612A mutant revealed that PMA stimulates the phosphorylation of a peptide from wild-type IRS-1 that is absent from the tryptic peptide maps of the S612A mutant. Moreover, a synthetic peptide containing this phosphoserine and its nearby tyrosine was found to be phosphorylated by the insulin receptor to a much lower extent than the same peptide without the phosphoserine. Activation of protein kinase C was found to stimulate by 10-fold the ability of a cytosolic kinase to phosphorylate this synthetic peptide as well as the intact insulin receptor substrate-1. Finally, cytosolic extracts from the livers of ob/ob mice showed an 8-fold increase in a kinase activity capable of phosphorylating this synthetic peptide, compared to extracts of livers from lean litter mates. These results indicate that activation of protein kinase C stimulates a kinase which can phosphorylate insulin receptor substrate-1 at serine 612, resulting in an inhibition of insulin signaling in the cell, posing a potential mechanism for insulin resistance in some models of obesity.  相似文献   

15.
Certain nutrients and growth factors can stimulate pancreatic beta-cell growth. However, the appropriate mitogenic signaling pathways in beta-cells have been relatively undefined. In this study, differential gene expression in NEDH rat insulinoma was compared with NEDH rat primary islet beta-cells. Differential mRNA display analysis revealed an elevated expression in insulinoma of VL30 transposons, S24 ribosomal protein, and cytochrome-C oxidaseVIIc that is typical for cells undergoing mitosis. A gene candidate approach revealed that mRNA levels of the oncogenes c-fos and c-jun were equivalently expressed in insulinoma and islet cells, as was the mRNA for the mitogenic signal transduction molecule insulin receptor substrate (IRS)-1. However, in contrast to that of IRS-1, IRS-2 gene expression was 60- to 70-fold higher in the insulinoma tissue compared with islets, which was reflected at the protein as well as the mRNA level. The specific elevated IRS-2 expression was a consistent observation across all rodent pancreatic beta-cell lines. To investigate whether IRS-2 was functional, serum-stimulated beta-cell proliferation was examined in isolated insulinoma cells. After a 48-h period of serum withdrawal, 24 h of serum refeeding rendered an 8- to 10-fold increase in [3H]thymidine incorporation into insulinoma cells. This serum-stimulated DNA synthesis was prevented by inhibitors of tyrosine protein kinase and phosphatidylinositol (PI) 3-kinase activities, as well as the activation of mitogen-activated protein (MAP) kinase and p70S6K. Examination of IRS-mediated signal transduction pathways indicated that after 10-15 min of serum refeeding, there was increased tyrosine phosphorylation of IRS-2 and pp60, and PI 3-kinase recruitment to IRS-2. Serum also increased the association of growth factor-bound protein 2/murine sons of sevenless 1 protein to a PI 3-kinase/IRS-2 protein complex. Moreover, serum also activated MAP-kinase (erk-1 and erk-2 isoforms) and 70 kD S6 kinase. Thus IRS-mediated signal transduction pathways are functional in pancreatic beta-cells. It is conceivable that IRS-2 expression in beta-cells contributes to maintaining the islet beta-cell population, complementary to observations in the IRS-2 knockout mouse in which beta-cell mass is markedly reduced.  相似文献   

16.
The signal transduction pathway by which insulin stimulates glucose transport is not understood, but a role for complexes of insulin receptor substrate (IRS) proteins and phosphatidylinositol (PI) 3-kinase as well as for Akt/protein kinase B (PKB) has been proposed. Here, we present evidence suggesting that formation of IRS-1/PI 3-kinase complexes and Akt/PKB activation are insufficient to stimulate glucose transport in rat adipocytes. Cross-linking of beta1-integrin on the surface of rat adipocytes by anti-beta1-integrin antibody and fibronectin was found to cause greater IRS-1 tyrosine phosphorylation, IRS-1-associated PI 3-kinase activity, and Akt/PKB activation, detected by anti-serine 473 antibody, than did 1 nM insulin. Clustering of beta1-integrin also significantly potentiated stimulation of insulin receptor and IRS-1 tyrosine phosphorylation, IRS-associated PI 3-kinase activity, and Akt/PKB activation caused by submaximal concentrations of insulin. In contrast, beta1-integrin clustering caused neither a change in deoxyglucose transport nor an effect on the ability of insulin to stimulate deoxyglucose uptake at any concentration along the entire dose-response relationship range. The data suggest that (i) beta1-integrins can engage tyrosine kinase signaling pathways in isolated fat cells, potentially regulating fat cell functions and (ii) either formation of IRS-1/PI 3-kinase complexes and Akt/PKB activation is not necessary for regulation of glucose transport in fat cells or an additional signaling pathway is required.  相似文献   

17.
Signaling through the insulin receptor tyrosine kinase involves its autophosphorylation in response to insulin and the subsequent tyrosine phosphorylation of substrate proteins such as insulin receptor substrate-1 (IRS-1). In basal 3T3-L1 adipocytes, IRS-1 is predominantly membrane-bound, and this localization may be important in targeting downstream signaling elements that mediate insulin action. Since IRS-1 localization to membranes may occur through its association with specific membrane proteins, a 3T3-F442A adipocyte cDNA expression library was screened with non-tyrosine-phosphorylated, baculovirus-expressed IRS-1 in order to identify potential IRS-1 receptors. A cDNA clone that encodes sigma3A, a small subunit of the AP-3 adaptor protein complex, was demonstrated to bind IRS-1 utilizing this cloning strategy. The specific interaction between IRS-1 and sigma3A was further verified by in vitro binding studies employing baculovirus-expressed IRS-1 and a glutathione S-transferase (GST)-sigma3A fusion protein. IRS-1 and sigma3A were found to co-fractionate in a detergent-resistant population of low density membranes isolated from basal 3T3-L1 adipocytes. Importantly, the addition of exogenous purified GST-sigma3A to low density membranes caused the release of virtually all of the IRS-1 bound to these membranes, while GST alone had no effect. These results are consistent with the hypothesis that sigma3A serves as an IRS-1 receptor that may dictate the subcellular localization and the signaling functions of IRS-1.  相似文献   

18.
The receptor kinase activity associated with the epidermal growth factor (EGF) receptor and platelet-derived growth factor (PDGF) receptor plays an important role in ligand-induced signaling events. The effect of specific, synthetic chemical inhibitors of PDGF- and EGF-mediated receptor tyrosine autophosphorylation on receptor signaling were examined in NIH 3T3 cells overexpressing PDGF or EGF receptors. Specific inhibition of ligand-dependent receptor autophosphorylation, PI3K activation, mitogen-activated protein kinase (MAPK) activation, cyclin E-associated kinase activity and cell proliferation was measured after treatment of cells with these inhibitors. A synthetic PDGF receptor kinase inhibitor exhibited specific inhibitory properties when tested for PDGF-induced receptor autophosphorylation, MAPK activity, PI3K activation, entry into S phase and cyclin E-associated kinase activity. A synthetic EGF receptor kinase inhibitor showed selective inhibitor properties when tested for EGF-induced receptor autophosphorylation, MAPK activation, PI3K activation, entry into S phase and cyclin E-associated kinase activity. In both cases, these compounds were found to be effective as inducers of growth arrest and accumulation of cells in the G1 phase of the cell cycle after ligand treatment. However, at high concentrations, the EGF receptor kinase inhibitor was observed to exhibit some nonspecific effects as demonstrated by attenuation of PDGF-induced receptor autophosphorylation and cell cycle progression. This demonstrates that it is critical to use the lowest concentration of such an inhibitor that will alter the response under investigation, to have confidence that the conclusions derived from the use of such inhibitor are valid. We conclude that these experimental parameters signify useful end points to measure the relative selectivity of tyrosine kinase inhibitors that affect receptor-mediated signal transduction.  相似文献   

19.
Insulin receptor substrate-1 (IRS-1) is phosphorylated on multiple tyrosine residues by ligand-activated insulin receptors. These tyrosine phosphorylation sites serve to dock several Src homology 2-containing signaling proteins. In addition, IRS-1 contains a pleckstrin homology domain and a phosphotyrosine binding domain (PTB) implicated in protein-protein and protein-lipid interactions. In a yeast two-hybrid screening using Xenopus IRS-1 (xIRS-1) pleckstrin homology-PTB domains as bait, we identified a Xenopus homolog of Rho-associated kinase alpha (xROKalpha) as a potential xIRS-1-binding protein. The original clone contained the carboxyl terminus of xROKalpha (xROK-C) including the putative Rho binding domain but lacking the amino-terminal kinase domain. Further analyses in yeast indicated that xROK-C bound to the putative PTB domain of xIRS-1. Binding of xROK-C to xIRS-1 was confirmed in Xenopus oocytes after microinjection of mRNA corresponding to xROK-C. Furthermore, microinjection of xROK-C mRNA inhibited insulin-induced mitogen-activated protein kinase activation with a concomitant inhibition of oocyte maturation. In contrast, microinjection of xROK-C mRNA did not inhibit mitogen-activated protein kinase activation or oocyte maturation induced by progesterone or by microinjection of viral Ras (v-Ras) mRNA. These results suggest that xROKalpha may play a role in insulin signaling via a direct interaction with xIRS-1.  相似文献   

20.
Through direct synthetic efforts, we discovered a small molecule that is a nanomolar inhibitor of the human fibroblast growth factor-1 receptor (FGFR) tyrosine kinase. PD 166866, a member of a new structural class of tyrosine kinase inhibitors, the 6-aryl-pyrido[2,3-d]pyrimidines, was identified by screening a compound library with assays that measure protein tyrosine kinase activity. PD 166866 inhibited human full-length FGFR-1 tyrosine kinase with an IC50 value of 52.4 +/- 0.1 nM and was further characterized as an ATP competitive inhibitor of the FGFR-1. In contrast, PD 166866 had no effect on c-Src, platelet-derived growth factor receptor-beta, epidermal growth factor receptor or insulin receptor tyrosine kinases or on mitogen-activated protein kinase, protein kinase C and CDK4 at concentrations as high as 50 microM. PD 166866 was a potent inhibitor of basic fibroblast growth factor (bFGF)-mediated receptor autophosphorylation in NIH 3T3 cells expressing endogenous FGFR-1 and in L6 cells overexpressing the human FGFR-1 tyrosine kinase, confirming a tyrosine kinase-mediated mechanism. PD 166866 also inhibited bFGF-induced tyrosine phosphorylation of the 44- and 42-kDa (ERK 1/2) mitogen-activated protein kinase isoforms in L6 cells, presumably via inhibition of bFGF-stimulated FGFR-1 tyrosine kinase activation. PD 166866 did not inhibit platelet-derived growth factor, epidermal growth factor or insulin-stimulated receptor autophosphorylation in vascular smooth muscle, A431 or NIHIR cells, respectively, further supporting its specificity for the FGFR-1. In addition, daily exposure of PD 166866 to L6 cells at concentrations from 1 to 100 nM resulted in a concentration-related inhibition of bFGF-stimulated cell growth for 8 consecutive days with an IC50 value of 24 nM. In contrast, PD 166866 had little effect on platelet-derived growth factor-BB-stimulated growth of L6 cells or serum-stimulated vascular smooth muscle cell proliferation. Finally, PD 166866 was found to be a potent inhibitor of microvessel outgrowth (angiogenesis) from cultured artery fragments of human placenta. These results highlight the discovery of PD 166866, a new nanomolar potent and selective small molecule inhibitor of the FGFR-1 tyrosine kinase with potential use as antiproliferative/antiangiogenic agent for such therapeutic targets as tumor growth and neovascularization of atherosclerotic plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号