首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
半固态挤压铸造的A356合金首先在540℃下进行固溶处理,随着固溶温度升高,Mg和Si原子逐渐溶解于基体中,并产生了固溶强化作用。抗拉强度、延伸率和硬度在固溶6 h达到峰值,之后合金力学性能随固溶时间延长而下降。在固溶处理之后合金在180℃下进行了不同时间的时效处理。随着时效时间延长,Mg2Si相逐渐在基体中析出,析出相显著球化细化,尺寸约为2μm。经过对合金组织和力学性能的分析,半固态挤压铸造A356合金的最佳热处理制度为:540℃固溶6h,180℃时效4h。经过固溶和时效处理后的合金抗拉强度达到336 MPa,延伸率达到6.9%,硬度达到1240 MPa,相较于热处理前的性能提升了106.7%。  相似文献   

2.
孙敏  杨杰  张豪 《铸造技术》2005,26(7):597-599
采用自行开发的控制往复喷射成形专利技术,以产业化规模制备了铝合金锭坯,研究了对传统铸造A356铝合金的组织及其力学性能的影响.结果表明:喷射成形态合金组织均匀,致密度达到95.8%;挤压态合金中均匀分布大量细小Si颗粒;固溶温度为540℃,时效温度为160℃,时效10 h时硬度达到峰值,继续延长时效时间对硬度值影响甚微;经过固溶时效处理的A356铝合金常温抗拉强度σb=337 MPa,屈服强度σ0.2=281 MPa,伸长率δ5=18.3%,分别提高21.2%,35.7%,205%.  相似文献   

3.
AlSi7Mg合金半固态压铸件热处理强化机理研究   总被引:6,自引:0,他引:6  
对AlSi7Mg合金(A356)半固态压铸件和液态压铸件进行了不同工艺的固溶与时效热处理,分析了其显微组织与疏松度,测定了硬度、拉伸强度及延伸率等力学性能。实验得出,铝合金半固态压铸件原始态的力学性能优于液态压铸件,并且半固态压铸件时效强化效果尤其明显,拉伸强度可达330MPa以上,延伸率10%以上。这主要是由于半固态压铸件比液压件具有更加致密,且为球状的非树枝晶组织。铝合金半固态压铸件时效强化,机理主要归于弥散析出Mg2Si强化相。  相似文献   

4.
通过硬度、电导率、力学性能、金相显微镜、扫描电镜等研究固溶淬火后双级人工时效对6082挤压型材的影响。结果表明,6082挤压组织中包括了少量的Mg2Si和α-(AlMnFeSi)相,但经固溶处理后Mg2Si相会慢慢回溶到铝基体,而α-(AlMnFeSi)相很难溶解。6082带筋板型材经540℃×60min固溶,双级人工时效120℃×10min+175℃×4h后,力学性能为抗拉强度333MPa,屈服强度310MPa,A50=9.5%,而540℃×60 min固溶+175℃×8 h时效后的力学性能为:抗拉强度328MPa,屈服强度309MPa,A50=8.9%。  相似文献   

5.
采用正交设计方法,研究了固溶时效工艺参数对AlSi7MgBe合金半固态挤压成形件热处理性能的影响,通过对抗拉强度的测试,对热处理工艺进行了优化,结果表明:当545℃固溶4h,175℃时效11h,成形件具有最优力学性能σb=318MPa,δs=15.24%,此时析出相弥散地分布在基体上。  相似文献   

6.
采用Ar气保护制备了Mg-5Sn-1Si(质量分数,%)合金,并研究了合金的铸态组织和在480℃固溶处理及180℃和280℃不同时效热处理对合金组织中析出相演变的影响及组织与硬度的关系。结果表明,合金铸态组织由α-Mg、共晶Mg2Si、共晶Mg2Sn三相组成;经480℃固溶处理后Mg2Sn相完全固溶,粗大的Mg2Si相得到少量球化;时效处理过程中Mg2Si相得到球化。在180℃时效时,Mg2Sn无沉淀析出,硬度较低,时效保温24 h仅为24.1 HV。在280℃时效时,细小的Mg2Sn相弥散析出并使合金的硬度明显升高,时效保温18 h达到峰值硬度47.6 HV,并随时间的延长出现过时效现象。280℃时效初期,组织中形成较宽的无析出带(PFZ),随着时效时间的延长无析出带PFZ消失。  相似文献   

7.
采用光学显微镜、扫描电镜、透射电镜、X射线衍射仪、维氏硬度测试仪和万能力学试验机等研究了固溶和时效热处理对铸造Mg-5Y-2Nd-3Sm-0.5Zr合金组织与力学性能的影响。结果表明:铸态合金组织主要由α-Mg基体,Mg24Y5、Mg41Nd5和Mg41Sm5相组成;经固溶处理,铸态合金中粗大的第二相固溶于α-Mg基体中,时效处理后有新的纳米级第二相析出;铸造Mg-5Y-2Nd-3Sm-0.5Zr合金的最佳热处理工艺为525℃下保温10 h,然后225℃下时效处理12 h,热处理后合金具有最优良的力学性能,硬度、抗拉强度、屈服强度和伸长率分别为124.8 HV,296.9 MPa,255.4 MPa和5.78%。  相似文献   

8.
通过Brinell硬度和拉伸测试以及OM,SEM和TEM的组织观察,研究了形变热处理对Al-12.0%Si-0.2%Mg合金组织与力学性能的影响.结果表明,通过形变热处理可以显著提高试验合金的硬度、强度及伸长率.该合金经500 ℃热挤压、(535±5)℃固溶、160 ℃时效12 h处理后Brinell硬度可达85.7 HBS,抗拉强度为256.3 MPa,伸长率为15.0%.热挤压过程加速共晶Si相发生碎断与球化,细小的Si颗粒分布均匀,结合强化相在时效过程中弥散析出,导致形变热处理条件下合金的强度及伸长率同时提高.SEM和TEM观察显示,合金在热挤压过程中发生了基体Al的再结晶及Si和Mg2Si相的析出.  相似文献   

9.
研究了固溶-时效处理工艺和固溶-预冷变形-时效处理工艺对Cu-Co-Cr-Si合金力学性能、电学性能及其显微组织结构的影响。结果表明,最佳形变热处理工艺为980℃固溶1h,冰盐水淬火,40%预冷变形之后480℃时效4h。合金的抗拉强度、屈服强度、延伸率、硬度和相对电导率分别达到634MPa,575MPa,8.9%,1700MPa(HB)和43.2%IACS。这种合金有显著的时效强化特性,强化相为Cr粒子、Cr3Co5Si2相和Co2Si相。合金的高强度来源于固溶强化、亚结构强化和第二相析出强化。  相似文献   

10.
对热处理的挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能的影响进行了实验性探究。结果显示热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能具有显著影响。挤压态合金主要由非均匀分布的Mg2Sn相组成。经过495℃,10 h固溶处理之后,大部分Mg2Sn相溶入到基体中。时效处理能大幅改善Mg-9Sn-1.5Y-0.4Zr合金的力学性能,最佳时效工艺为:在250℃条件下时效60 h。实验最终力学性能参数为:维氏硬度HV 890 MPa,极限抗拉强度262 MPa,屈服强度218 MPa,延伸率10.4%。基于实验结果分析,可发现对于经时效处理的挤压态Mg-9Sn-1.5Y-0.4Zr合金,沉淀强化是主要的强化因素(~51.76%)。  相似文献   

11.
研究了凝固组织和Mg含量对A356合金快速热处理的影响。结果表明,A356合金经过Sr变质后,其凝固组织中的共晶Si形貌由纤维状变成球状,初生α相的晶粒尺寸减小。经过540℃×20 min+170℃×90 min快速热处理,合金微观组织中的Mg_2Si强化相能够充分固溶到基体中,其抗拉强度与T6态的基本相同。随着合金中Mg含量增加,固溶处理时,Mg_2Si相充分固溶进基体所需要的时间增加。当合金中Mg含量由0.3%增加到0.9%时,则需要经过540℃×40 min+170℃×90 min快速热处理,其力学性能与T6态的基本相同。  相似文献   

12.
研究了不同固溶处理工艺对Mg-2.6Sm-1.3Gd-0.6Zn-0.5Zr合金显微组织和力学性能的影响。合金的铸态显微组织主要由α-Mg和(Mg,Zn)3(Sm,Gd)1共晶相组成。510℃,4 h为最佳固溶处理条件,晶界附近的共晶相几乎全部溶于镁基体中,合金固溶态的室温抗拉强度为246 MPa,延伸率为11.3%。合金200℃时效析出序列为Mgssss→β’’(D019)→β’(bct)→β(fcc),峰时效态合金的屈服强度和抗拉强度达到185 MPa和282 MPa,延伸率为6.1%。  相似文献   

13.
本文对热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能的影响进行了实验性探究。结果显示热处理对挤压态Mg-9Sn-1.5Y-0.4Zr镁合金显微组织与力学性能具有显著影响。挤压态合金主要由非均匀分布的Mg2Sn相组成。经过495℃,10h固溶处理之后,大部分Mg2Sn相溶入到基体中。时效处理能大幅改善Mg-9Sn-1.5Y-0.4Zr合金的力学性能,最佳时效工艺为:在250℃条件下时效60h。实验最终力学性能参数为:维氏硬度89HV,极限抗拉强度262MPa,屈服强度218MPa,延伸率10.4%。基于实验结果分析,可以发现对于经时效处理的挤压态Mg-9Sn-1.5Y-0.4Zr合金,沉淀强化是主要的强化因素(~51.76%)。  相似文献   

14.
对含3.47%Si、0.54%Mg、0.33%Cu和0.39%Cr(质量分数)的低硅Al-Si-Mg铸造铝合金进行了固溶处理和时效。固溶处理工艺:分别在510、520、530、540℃保温2、4、6和8 h水冷;时效温度为170、180、190℃,保温时间2、4、6和8 h。检测了合金的显微组织和力学性能。结果表明:该铸造铝合金的最佳热处理工艺为540℃×4 h水冷固溶处理,随后180℃×6 h时效处理,经此工艺热处理的低硅Al-Si-Mg铸造铝合金的抗拉强度为365.9 MPa,屈服强度为313.9 MPa,断后伸长率为9.3%。  相似文献   

15.
《铸造技术》2016,(8):1602-1605
通过挤压铸造方法制备了ZA27合金蜗轮,并研究了固溶和时效工艺对挤压铸造ZA27合金组织和力学性能的影响。结果表明:挤压铸造工艺制备的ZA27合金蜗轮,各部位组织均匀、致密,力学性能优异。在370℃保温5 h固溶处理,合金的力学性能显著提高,抗拉强度和断后伸长率分别达到450 MPa和18.5%,分别较蜗轮本体提高14.8%和49.2%。合金在50℃和70℃时效时,硬度先升高,出现峰值后不断下降;合金在100℃和150℃时效时,硬度呈不断下降的趋势。  相似文献   

16.
为了确定挤压态Mg-5Sn-2Si-2Sr合金合适的热处理方案,分别采用硬度计、X射线衍射仪、力学性能试验机、光学显微镜,研究了该合金经T4(固溶处理)、T5(200℃×12 h时效)和T6(固溶+时效)热处理后显微组织及力学性能的变化。结果表明:挤压态Mg-5Sn-2Si-2Sr合金宜采用T5热处理工艺。经T5热处理后,在晶界处析出大量Mg2Si强化相,使合金的屈服强度、抗拉强度分别达210.9 MPa、257.0 MPa,高于挤压态、T4和T6热处理工艺下的合金强度。T4热处理时,固溶强化作用远小于退火软化作用,致使合金力学性能的下降。T6热处理时,析出相及晶粒尺寸的长大使得合金力学性能的提高受到了限制。  相似文献   

17.
变质后A356合金力学性能常常达不到工业使用要求,需通过热处理进一步强化。本文以Al-Sr-Y合金变质后的A356合金为研究对象,应用OM、SEM、拉伸试验机等仪器研究固溶和时效处理对变质后A356合金显微组织与力学性能的影响,以此探索出一种适用于变质后A356合金的热处理工艺。结果表明,经过540℃×4 h+175℃×6 h热处理后,共晶硅更加圆整和均匀,合金中强化元素Mg能够充分溶入基体,有利于时效过程析出强化相。合金在热处理后抗拉强度、屈服强度、伸长率分别为303.5、223.1 MPa、9.5%,与铸态变质合金相比,分别提升了57.7%、99.7%、20.3%。此时,断口中韧窝尺寸增大,合金由脆性断裂转变成韧性断裂,塑性增强。  相似文献   

18.
设计并采用挤压铸造工艺制备了3种高强韧AlSiMgMn合金。利用金相显微镜(OM)、扫描电镜(SEM)和能谱分析(EDS)等手段,研究了合金元素和热处理工艺对挤压铸造AlSiMgMn合金的微观组织和力学性能的影响。结果表明,Sr变质后挤压铸造AlSiMgMn合金中共晶Si变质等级超过AFS 5级,优化的热处理工艺为535℃×4h固溶+160℃×6h时效;当Mg含量从0.3%增加到0.5%,合金的抗拉强度和屈服强度分别增加60 MPa和70 MPa。添加Cu元素的AlSiMgMn合金采用Sb变质,共晶Si变质为AFS 3~4级,虽然热处理后共晶Si相球化良好,但铸造过程中不均匀变质导致颗粒出现团聚。该合金在优化的T6热处理下,抗拉强度为435 MPa,屈服强度为338 MPa,伸长率为7.0%。  相似文献   

19.
研究了固溶处理(T4)与固培+人工时效处理(T6)对直接挤压铸造Al-5Cu合金力学性能和显微组织的影响。结果表明,挤压铸造加快了合金热处理过程中原子的扩散速度、缩短了热处理时间,通过热处理可以改变合金的组织结构进而影响合金的力学性能.与铸态相比,在525~530℃下保温4h固溶处理后合金的力学性能明显提高,而且随着保温时间的增加略有上升,保温15h时达到最佳值.合金的抗拉强度(σb)和伸长率(δ5)可以达到389.6MPa和10.8%。固溶处理后挤压铸造Al-5Cu合金表现出明显的自然时效特征,在自然环境中铜原子易于析出形成具有很强强化效果,且能稳定存在的GP区和θ"矿相,这些细小弥散分布的强化相使得合金处于固溶+自然时效状态下较T6状态下具备更好的力学性能。  相似文献   

20.
喷射成形7055铝合金热处理工艺与力学性能的研究   总被引:1,自引:1,他引:1  
主要研究了喷射成形7055铝合金经过反挤压成型以及热处理后的金相显微组织和力学性能.对挤压态合金进行固溶处理和时效处理后得到了时效硬化曲线并进行了力学性能测试.结果显示:480℃×2h的固溶制度为最佳固溶制度;通过测试硬度值确定最佳单级时效制度为120℃×18h,其硬度可达209HV.抗拉强度为692.12MPa,伸长率为3%.为了进一步提高该合金的伸长率,又对固溶处理件进行双级时效处理(120℃×3h 160℃×4h),其硬度为205HV,抗拉强度为683MPa,伸长率为9.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号