首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用于假手指尖的光纤光栅触觉力传感器研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对现有假手触觉测量常用的薄膜压力传感器精度不佳、线性度差、迟滞性高等问题,研究了一种可安装于假手指尖的光纤布拉格光栅触觉力传感器。首先,通过传感单元的微小化结构设计,可以将施加的外力转化为光纤承受的轴向力;进而,通过有限元对传感器结构参数进行优化,提高了光纤光栅对于压力的灵敏度;然后,围绕假手指尖应用的需求,制作了这种光纤布拉格光栅触觉力传感器;最后,对该传感器进行了性能标定、对比分析和应用抓取3个实验分析,实验结果表明:该传感器压力灵敏度为0.103 8 nm/N,线性度R~2为0.998,重复性误差为1.32%和迟滞性误差为2.19%;与现有的薄膜压力传感器对比,该传感器的线性度和重复度都更高,迟滞性更低。  相似文献   

2.
灵敏度系数可调布拉格光栅应变传感器的设计   总被引:6,自引:4,他引:2  
针对裸光纤布拉格光栅应变监测量程或精度有限的问题,提出了一种灵敏度系数可调光纤布拉格光栅应变传感器的设计方法。理论和实验研究了该方法在增大光纤布拉格光栅应变监测量程或提高精度方面的性能,并以此研制了基片表面粘贴式和FRP封装式两种封装结构的灵敏度系数可调应变传感器。理论分析并实验标定了传感器的灵敏度系数。最后,对传感器理论和实验灵敏度系数误差进行了分析,指出了改进的方向。实验结果表明:两种封装结构的大量程传感器的量程分别增加了243%和126%,高精度传感器的精度提高至0.51με和0.52με。传感器标定实验表明,两种封装结构的传感器都有很好的线性度和重复性,相关系数达到0.999以上。  相似文献   

3.
设计了一种小量程光纤布拉格光栅称重传感器,采用双孔单槽式悬臂梁型弹性体结构,并利用有限元软件ANSYS对弹性体结构进行优化设计,以满足小量程设计要求。采用四片光纤光栅布片方式,提高了传感器的灵敏度,并利用正应变和负应变的光纤光栅信号进行叠加,以补偿温度的影响。对传感器进行加载卸载实验,并对所设计的传感器进行了整体性能分析,实验结果表明,传感器的称重范围为0-4kg,线性度误差小于0.9%,温度补偿达到了一定效果,性能稳定,证明了设计方法的可行性。  相似文献   

4.
为了测量控机床结构件、微加工工作台的微小变形量,设计了一种高精度弓型光纤布拉格光栅(FBG)微位移传感器。将光纤布拉格光栅的栅区部分粘贴在弓型上下壁处,当弓形件发生变形时,可测出上下壁的应变值,从而测得位移值并进行温度解耦。实验结果表明,在量程为1mm时,传感器的灵敏度为2.02pm/μm,线性相关系数为0.998 3,实验的迟滞误差为4.08%,重复性误差为4.08%。在温度补偿实验中可以看出,当温度上升1℃,波长漂移量不到1pm。类似于弓型结构衍生出一种半弓型结构的位移传感器。两类传感器相比,弓型传感器的温度灵敏度比半弓型传感器小0.001 5pm/μm,温度补偿效果更好;但半弓型传感器的线性度为0.4%,线性度比弓型传感器好。两种传感器均满足测量值稳定可靠、精度高、抗电磁干扰能力强,温度不敏感等要求。  相似文献   

5.
本文设计了一种面向纹理识别的便携式触觉传感器,该传感器利用光纤光栅(FBG)识别检测不同的纹理和滑动接触速度,且便于机器人系统集成,同时对硬件和软件配置要求低,受环境影响小。在三维建模基础上对传感器结构进行静力学分析并优化,提高FBG对力觉信息的灵敏度;专门设计并搭建了实验平台,对传感器进行静力标定实验和复杂多纹理表面检测实验。通过实验数据的时频分析,验证了该传感器可以识别不同的滑动接触速度和不同的纹理。在该传感器中,FBG3的灵敏度最高,加载时,平均灵敏度约为51.1 pm/N,线性度为0.998;卸载时,平均灵敏度约为50.8 pm/N,线性度为0.998。FBG2的重复性误差和迟滞性误差最大,分别为2.35%和2.23%。  相似文献   

6.
针对三维力传感器维间耦合干扰严重的问题,以双层十字梁结构光纤布拉格光栅三维力传感器为研究对象,提出了基于麻雀搜索算法优化极限学习机(Sparrow Search Algorithm–Extreme Learning Machine,SSA-ELM)的解耦算法.首先,研究了光纤布拉格光栅的传感及测力原理,揭示该三维力传感...  相似文献   

7.
为实现轮胎-路面接触三向力的精确测量,以光纤光栅为敏感元件,设计出一种新的三向力测量传感器。传感器弹性体由3部分组成,通过在弹性体上粘贴3根波长不同的光纤光栅实现三向力的测量。运用SolidWorks simulation对这种三向力传感器进行了有限元分析和3个方向的受力验证实验。结果表明,在实验条件下这种传感器测量线性度达到99. 85%以上,F_x、F_y、F_z方向的载荷响应灵敏度为:12. 818、13. 131、5. 281 pm/N,最小精度为:0. 156、0. 152、0. 379 N,量程:F_x/F_y方向为-8~8 N,F_z方向为0~40 N,满足实际测量的需求。  相似文献   

8.
提出了一种飞秒刻写光纤法布里-珀罗(F-P)腔级联切趾布拉格光纤光栅(FBG)的微结构传感器并研究了该传感器的温度与应变传感特性。该微结构传感器光谱稳定性良好,监测时长2 h内FBG波长最大漂移量为0.009 nm,功率最大漂移量为0.015 d B,F-P腔波长最大漂移量为0.018 nm,功率最大漂移量为0.072 d B。当应变由0με增至450με再减回0με时,该微传感器FBG特征峰先右移再左移,波长变化0.530 4 nm,应变灵敏度约1.17 pm/με,线性度高于0.99;光纤F-P腔特征谷波长变化0.491 1 nm,应变灵敏度约1.10 pm/με,线性度高于0.90。当温度由50℃升至200℃再降回50℃时,FBG特征峰先右移再左移,波长变化约1.418 nm,应变灵敏度约10.09 pm/℃,线性度高于0.95;光纤F-P腔特征谷波长变化约1.578 nm,应变灵敏度约10.53 pm/℃,线性度高于0.98。所提出的微结构传感器是解决单根光纤双参数测量的有效手段,同时对复杂环境下的多参数耦合测量与解耦也具有重要的参考价值。  相似文献   

9.
光纤光栅压力传感器实验研究   总被引:2,自引:0,他引:2  
文中提出了一种新颖的光纤布拉格光栅压力传感器,它是利用光纤布拉格光栅(FBG)对应变的传感特性,将光纤布拉格光栅粘贴于C型压力弹簧管上的特定位置,通过光纤布拉格光栅反射波长的变化,来实现对压力的测量。该传感器灵敏度的实验值和理论值分别为0.671nm/MPa和0.791nm/MPa,且具有很好的线性度,迟滞很小,有一定的发展前景。  相似文献   

10.
LPFG和FBG级联结构双参数光纤传感器研究   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种长周期光纤光栅(LPFG)级联布拉格光纤光栅(FBG)的温度/应变双参数光纤传感器。利用飞秒激光直写制作LPFG并级连FBG,且FBG波谷位置为1 551.9 nm,LPFG波谷位置为1 559.1 nm,最高对比度为-12.7 d B。在30~70℃温度变化范围内对传感器温度特性进行测试,并在25℃超净环境下对0~500με应变变化范围内对传感器应变特性进行测试。实验结果表明,升温过程FBG中心波长发生红移,灵敏度15.00 pm/℃,线性度0.981 3;LPFG中心波长发生蓝移,灵敏度-11.75 pm/℃,线性度0.945 3。降温过程FBG中心波长发生蓝移,灵敏度18.25 pm/℃,线性度0.953 8;LPFG中心波长发生红移,灵敏度-15.42 pm/℃,线性度0.980 2。加载过程FBG中心波长发生红移,灵敏度0.93 pm/με,线性度0.991 5;LPFG中心波长发生蓝移,灵敏度-1.51 pm/με,线性度0.986 3。卸载过程FBG中心波长发生蓝移,灵敏度0.92 pm/με,线性度0.990 9;LPFG中心波长发生红移,灵敏度-1.51 pm/με,线性度0.972 8。结果表明,该光纤传感器灵敏度高,线性度好,可以同时动态实现应变和温度的测量。  相似文献   

11.
针对现有光学传感器难以满足大型结构中高频振动监测的需求,提出一种基于椭圆铰链的中高频双光纤布拉格光栅加速度传感器。基于传感器理论模型分析传感器的灵敏度和谐振频率,采用MATLAB和ANSYS软件对传感器的结构参数进行优化及仿真,研制双光纤布拉格光栅传感器,并进行传感器灵敏度标定实验。结果表明:传感器的谐振频率约为780 Hz,灵敏度为132.53 pm/g,横向抗干扰度小于3.3%,可用于80~500 Hz之间振动信号的实时监测。  相似文献   

12.
为了实现生物医疗领域软体手术机器人等柔性机构的曲率测量,本文提出并设计了基于PVC(Polyvinyl Chloride,聚氯乙烯)和硅胶复合基底的光纤布拉格光栅柔性曲率传感器。将光纤光栅植入到硅胶片中,并将硅胶片粘贴在PVC基底的表面,形成基于PVC和硅胶复合基底的曲率传感器。使用标准曲率校准块对传感器进行了校准实验,测试不同曲率下传感器的反射光谱、波长漂移量等参数。为了证明PVC基底对植入在硅胶中FBG传感器的性能影响,对基于PVC和硅胶复合基底和基于硅胶基底的传感器进行了灵敏度和重复性的实验测试。实验结果表明:PVC基底可以提高植入硅胶中FBG曲率传感器的灵敏度和重复性,且基于PVC-硅胶复合基底的传感器灵敏度最高可达245.5pm/m-1,偏差指数不足3%。该传感器在生物医学等软体机器人和柔性机构的曲率测量中具有广阔的应用前景。  相似文献   

13.
针对弹性体式六维力传感器存在的瓶颈矛盾,提出一种非弹性体式平板式压电六维力传感器。目前研究这类六维力传感器的静态性能主要是试验标定法和数字仿真法,这两种方法无法找到传感器结构参数与传感器性能之间的数学关系,也就无法全面实现基于静态特性的结构参数设计。从研究这类传感器的灵敏度特性出发,分析传感器的测量原理,推导传感器的等效结构模型;提出基于灵敏度特性的静态数学解析模型,建立这类传感器的数值模型;结合传感器的数学解析模型和数值模型研制传感器试验原型并开展静态标定试验,测试灵敏度、各向同性度、维间耦合、线性度、重复性等静态特性参数。试验结果证明:平板式压电六维力传感器工作原理正确,解析数学模型和数字模型有效,研究结论为全面设计和研究这类多维力传感器的静态特性奠定了基础。  相似文献   

14.
为克服现有光纤光栅位移传感器设计中存在的温度—位移交叉影响、悬臂梁易产生横向偏移等对测量精度的不利影响,提出了一种温度解耦的双悬臂梁式光纤光栅位移传感器。推导传感器的位移测量原理并进行有限元仿真分析,得出梁挠度与位移变化成线性关系。通过对比双悬臂梁不同位置处光纤光栅组合测位移的线性度、灵敏度和重复性误差,结果表明:采用双悬臂梁上表面双向拉伸光栅测量位移时,效果最佳;所设计的光纤光栅位移传感器最大量程可达55mm,灵敏度可达47. 3035pm/mm,最大重复性误差仅为0. 491%,在结构健康监测中具有良好的应用前景。  相似文献   

15.
为了实现对大型旋转机械扭振的准确测量,提出了一种基于光纤布拉格光栅(Fiber Bragg Grating,FBG)应变的扭振测量方法。首先,根据旋转机械轴系的扭振产生机理以及光纤光栅传感技术,建立了扭振与光纤光栅的应变传递模型,进而设计了光纤光栅应变传感器。接着,搭建了静、动态实验平台,对该传感器进行了静、动态标定实验。最后,在机械运行状态下,对该传感器进行了动态扭振测试实验。标定实验结果表明:在线性区间内,该传感器的灵敏度为12.464με/Nm,线性相关系数为0.9987,迟滞误差为3.02%,重复性误差为1.23%;在动态响应实验中,响应时间为0.171s(±5%),超调量为67.81%。动态测试实验结果表明:该传感器能检测出与已知加载特征一致的扭振信号。因此,基本满足对扭振测量的稳定可靠、精度高、抗电磁干扰等要求。  相似文献   

16.
《工具技术》2013,(8):61-65
微位移测量是目前热点研究领域,光纤布拉格光栅作为良好的传感元件,已被用于微位移测量领域。本文首先对布拉格光纤光栅传感的基本原理进行了分析,在此基础上设计制作了一种光纤光栅位移传感器。采用布拉格光纤光栅作为传感元件,利用自解调法进行波长解调,然后设计一整套传感系统,对微位移量进行了传感测量。利用激光干涉仪和PI微动平台对系统性能进行测试,实验结果显示传感系统分辨率达到50nm,系统回零重复性的误差26nm,系统的灵敏度为21mV/μm,最大非线性引用误差为2.45%。  相似文献   

17.
FBG传感器应变标定方法   总被引:3,自引:0,他引:3  
为了提高光纤光栅应变传感器测量精度,针对光纤光栅传感器工程应用情况,提出了一种光纤布拉格光栅(fiber bragg grating,简称FBG)传感器应变特性标定方法。通过理论分析和实验标定了封装式光纤光栅应变传感器的灵敏度系数,对传感器理论与实验灵敏度系数误差进行了分析。实验结果表明,该方法简单、易行,用于光纤光栅传感器使用前的标定,可以提高基于光栅光栅传感器的测量精度和准确性。同时,该方法为光纤光栅传感器的工程推广应用奠定了基础。  相似文献   

18.
光纤光栅应变片是一种新型的光纤光栅应力传感预制结构,它把布拉格光栅封装在光连接器内部以实现分体插接式结构,从而保证光纤光栅应变片在具有布拉格光栅体小质轻等优点的同时,还具有类似于光连接器的使用便利性,从而解决了光纤光栅传感器使用复杂,不宜用作二次变换元件的缺陷,扩大了光纤光栅传感器的使用范围.实验表明:光纤光栅应变片具有良好的线性输出和测量灵敏度,而且热输出小,是一种适合工程测试人员使用的通用型光纤光栅应力传感器.  相似文献   

19.
为了检测光纤布拉格光栅(FBG)对压力响应的灵敏度和可重复操作性,根据FBG传感的原理,分别讨论了其温度和应变传感特性。通过实验测量了FBG轴向应力与中心反射波长的关系,得到两者之间呈良好的线性关系,光栅的轴向应变灵敏度为0.013pm/μm。将FBG黏贴在一圆柱杆上,测量了压力增大和减小时FBG中心波长的变化,拟合得到线性度分别可达到0.999 0和0.999 9,压力响应灵敏度均为4.8×10~(-3) nm/MPa,并计算出中心波长实验值的相对误差为2.05%,同时分析了误差存在的主要原因。  相似文献   

20.
为了研究光纤布拉格光栅(Fiber Bragg Grating, FBG)在感知形状变形时,低杨氏模量的柔性材料与高杨氏模量的刚性二氧化硅的结合是否存在刚-柔应变耦合引起的蠕变、应变传递差异等实际问题。采用软体机器人常用的硅胶和聚二甲基硅氧烷(polydimethylsiloxane,PDMS)材料,制备了4个不同杨氏模量的软体基体,在每个软体基体内植入了3个FBG,形成4个具备形状测量能力的柔性传感器,并进行弯曲测试,然后建立应变传递模型验证了实验结果与理论推导的一致性。结果表明:软体基体和FBG结合时存在刚-柔耦合引起的蠕滑问题,约30 min后趋于耦合稳定。其次,4个柔性传感器内的3支FBG耦合稳定后的波长漂移量均表现出较好的线性和一致性。此外,FBG与基体的刚-柔性差异越大,耦合蠕滑越严重,应变传递引起的波长漂移量越小。其中,最大应变传递率为0.680,最小应变传递率为0.260,最大灵敏度为56.649,最小灵敏度为35.668。研究结果为基于植入式光纤光栅的软体机器人形状测量技术的研究提供了科学参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号