首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用室温压缩变形与再结晶退火处理研究了Inconel 625高温合金冷变形及再结晶行为,采用EBSD技术分析冷变形过程中的应变分布、晶粒尺寸变化、组织与织构演变,分析冷变形Inconel 625合金再结晶过程中再结晶分数、晶粒尺寸、组织及织构演变。研究表明,Inconel 625合金在变形量为35%~65%时具有良好的塑性,随着变形量的增加,晶粒尺寸减小,应变分布越均匀,{111}<112>织构和{110}<001>织构逐渐减弱,而{001}<110>织构和{112}<111>织构略为增强。冷变形Inconel 625合金再结晶退火处理后,随着退火温度与保温时间的升高,再结晶分数增大;随着变形量的增大,Inconel 625合金发生完全再结晶时温度减小,且发生完全再结晶时的晶粒尺寸变小,变形量为35%时,再结晶过程主要是{112}<111>织构{123}<634>变形织构转变为{110}<112>织构、{001}<100>织构与{124}<211>织构。随着变形量增加到50%及65%时,冷变形产生的{123}<634>织构在再结晶过程中转变成了{124}<211>织构。  相似文献   

2.
利用光学显微镜、扫描电镜分析了不同冷轧变形量对Al-Mg-Si合金显微组织和微观织构的影响。结果表明:随着变形量的增加,再结晶织构Cube{001}<100>会经由Goss{011}<100>逐渐演变为以Copper{112}<111>和S{123}<634>为主要取向的形变织构,而Goss{011}<100>的体积分数表现为先增大后减小的趋势;合金形变带织构主要由强度较高的Copper{112}<111>织构和强度较弱的Cube{001}<100>织构组成;当变形量小于20%时,晶粒主要取向为{001}、{012},变形量大于40%时,{011}、{112}、{123}成为主要的晶粒取向。  相似文献   

3.
研究冷轧变形量(40%、75%和95%)和退火温度(650、750和850℃)对亚稳β钛合金Ti-7.5Nb-4Mo-2Sn(原子分数,%)的显微组织、织构和超弹性的影响。结果表明:不同冷轧变形量变形后,合金中出现了{111}110,{111}112和{001}110型冷轧织构,随变形量增大,冷轧织构强度有小幅度增加,其中以{111}112、{111}110型织构强度增幅度最大;经过650~850℃退火后,合金发生再结晶,并形成了再结晶织构,其中变形量为95%、650℃退火后,试样的组织由细小的等轴状β相构成,同时形成了较强的{112}110,{111}112再结晶织构,合金试样表现出较好的超弹性,其应变回复率71.5%;细小的等轴晶组织和{111}112再结晶织构,能提高合金的超弹性能。  相似文献   

4.
高压箔经过多道次冷轧后,形成类型复杂的织构。本试验应用X射线衍射仪测定铝箔织构,定量研究了冷轧高纯铝箔常见初始织构与再结晶织构的关系。结果表明,当初始织构为高含量的S织构{123}<634>、铜织构{112}<111>和约10%的立方织构{100}<001>,较少的旋转立方{001}<110>、黄铜织构{011}<211>时,再结晶退火后立方织构含量最高。由于S织构与立方织构存在40°<111>关系,在退火过程中有利于形成立方织构。  相似文献   

5.
利用EBSD技术对CGO硅钢热轧、中间退火、脱碳退火及二次再结晶退火组织及织构进行分析,研究了CGO硅钢各阶段加工制备过程中高斯{110}001晶粒的形状、尺寸及分布特点,分析了高斯取向晶粒在各工序过程中的遗传继承性特点。结果表明,CGO硅钢热轧板的次表层存在Goss取向晶粒,历经一次冷轧及中间退火后Goss取向晶粒基本消失,一次再结晶之后Goss织构仍不是主要织构,主要织构为{111}110和{111}112,说明Goss取向晶粒在二次再结晶退火前数量及尺寸上并不占优势,二次再结晶过程中Goss取向晶粒异常长大形成锋锐Goss织构。{111}110和{111}112织构组分的强度在一次冷轧中不断增加,{111}112织构组分的强度在二次冷轧后达到最大而{111}110织构组分是在初次再结晶后变强。  相似文献   

6.
采用X-ray衍射和光学显微镜对AA3104铝合金热粗轧板沿厚向的织构和组织进行研究。结果表明:热粗轧板中存在明显的组织和织构梯度现象;在表层及次表层,剪切织构占主导地位,表现为较强的旋转立方织构R-cube{001}110和{112}110织构,显微组织以再结晶组织为主;在中心层及过渡层,则以典型的形变织构(即Cu{112}111、S{123}634和Bs{011}211)及热变形流线组织为主;这种沿厚度方向的组织和织构梯度对热变形后再结晶织构也有很大影响,热粗轧板中原始的剪切织构有助于退火后立方织构的形成,而原始中心层的形变织构会促使热变形退火后产生{111}110剪切织构和P织构。  相似文献   

7.
观察分析了Fe-6.5% Si合金冷轧前后及在不同再结晶退火过程中的组织、织构及有序结构的特点及其演变规律,用以分析织构形成机制及其影响因素.结果表明,间隙溶质原子偏聚于{110}面的概率大于{112}面,明显提高位错在{110}面滑移的临界分切应力;代位溶质原子有可能同步提高{110}和{112}面的临界分切应力,降低这两面的临界分切应力差;因此溶质原子都会导致{112}面更活跃的滑移和更强的{100} <110>冷轧织构.退火过程中{111} <112>取向晶粒易于长入{001}<110>和{112} <110>取向形变晶粒,使{111} <112>再结晶织构增强.冷变形会降低合金的有序化程度;DO3有序化过程的二级相变特点使之在退火加热过程中先于再结晶出现,再结晶之前的回复会促进有序化过程.  相似文献   

8.
采用电子背向散射衍射技术研究了镍基高温合金冷变形和再结晶退火过程中的组织演变、晶界特征分布、应变分布及织构演变规律。结果表明,当冷变形量较小(ε≤45%)时,晶粒沿着轧制方向被拉长,呈扁平状于基体中均匀分布,应力主要集中在晶界和孪晶界(TB)附近,大角度晶界(HAGBs)和TBs逐渐向亚晶界(Sub-GBs)和小角度晶界(LAGBs)转变。同时,出现Goss织构 {110}<001>、Brass-R织构{111}<112>、Twinned-Copper织构{552}<115>和Copper织构{112}<111>。当轧制压下量超过70%时,晶粒形状逐渐从扁平变为纤维状,晶粒的变形均匀性逐渐变好,应变分布变得均匀,LAGBs开始占主导地位。同时,织构类型保持不变,但织构强度增加。在1120 ℃退火15 min后,孪晶的长度分数随着轧制压下量的增加而增加。同时,变形织构转变为再结晶织构,织构类型增加,但织构强度减弱。此外,当退火孪晶的比例增加时,Copper织构{112}<111>不断向Twinned-Copper织构{552}<115>转变,并且经过30%~80%轧制变形的试样产生织构{124}<211>。  相似文献   

9.
采用硬度测试、X射线衍射(XRD)、电子背散射衍射(EBSD)等方法研究了单向轧制、交叉轧制和退火温度对Al-4Cu-0.73Mg(wt%)合金织构演变和微观组织的影响。结果表明:单向轧制试样在100~300 ℃退火保温1 h后显示出明显的Copper织构{112} <111>、S织构{123} <634>和Brass织构{011}<211>,而交叉轧制试样表现出强烈的Brass织构和H织构{011}<755>。当退火温度高于300 ℃,单向轧制和交叉轧制试样中的变形织构逐渐沿α取向线转变为由P织构{011}<001>、L织构{011}<011>、E织构{111}<110>和R织构{124}<211>等组成的再结晶织构。单向轧制和交叉轧制试样的晶粒尺寸随退火温度的升高先增加后减小,均在350 ℃退火1 h后有最大晶粒尺寸,分别约为8.2 μm和11.5 μm。单向轧制和交叉轧制试样均在冷轧后硬度值最高,约为108 HV,之后硬度值随退火温度的升高而逐渐下降,两种轧制试样的硬度值最终均稳定在50 HV左右。总体来看,轧制方式对试样织构的影响比对力学性能的影响大。  相似文献   

10.
通过对湿H2气氛下,相同退火温度、不同退火时间的CGO硅钢初次再结晶样品进行金相组织观察,并进行了EBSD微观织构分析,研究了CGO硅钢初次再结晶过程中的组织及再结晶织构演变行为。结果表明,在湿H2气氛下,820℃保温,CGO硅钢初次再结晶过程约在120 s时完成。随着退火时间的延长,γ面上{111}<112>织构含量逐渐减少,{111}<110>织构先减少后增多,随着再结晶的完成,部分{111}<112>取向晶粒向高斯{110}<001>取向转化的同时,也向{111}<110>取向转化,高斯{110}<001>织构含量逐渐增多。高斯取向晶粒较多是由{111}<112>取向晶粒转化而来,同时也证明了CGO硅钢高斯取向晶粒的二次再结晶异常长大生长机制为择优形核。  相似文献   

11.
采用冷旋锻对TB9钛合金棒材进行多道次冷变形,利用OM、EBSD、XRD、TEM以及拉伸等实验研究了不同冷变形量TB9钛合金棒材的显微组织、织构和拉伸性能及其规律。结果表明,TB9钛合金棒材的晶粒尺寸随冷旋锻变形量的增大而减小,部分晶粒尺寸达到纳米级。同时,晶粒随变形量的增加沿旋锻轴向转动,形成择优取向,由初始{001}110和{001}100织构转变为110取向的α-fiber和γ-fiber{001}110、{112}110和{111}110织构。在亚结构、小尺寸晶粒以及织构的共同作用下,TB9钛合金的强度随变形量的增大而增加,延伸率和面缩率在70%冷变形后仍保持在一个较高的水平,具有优异的冷变形能力。  相似文献   

12.
利用光学显微镜、X射线衍射仪和EBSD研究了初次再结晶退火温度对低温Hi-B钢组织、织构和晶界特征的影响。结果表明,初次再结晶退火温度直接影响低温Hi-B钢的初次再结晶的组织均匀性和晶粒平均尺寸,随着退火温度的提高,初次再结晶组织的晶粒平均尺寸从15.2μm增加到26.7μm, 820℃退火的初次再结晶组织均匀性最好。初次再结晶主要织构类型为γ织构、α织构、{001}<120>织构和{114}<481>织构,退火温度880℃时,{001}<120>织构强度明显增加。随着退火温度的提高,Goss晶粒数量减少,{114}<481>组分的面积分数先减少后增加,而{111}<112>组分的面积分数在退火温度升高到840℃后开始减少。退火温度为800℃时,{110}<001>取向晶粒与相邻晶粒的取向差为20°~45°的比例最高,为89.2%。不同退火温度下,{110}<001>取向晶粒周围的CSL晶界分布情况变化很大。  相似文献   

13.
研究了取向硅钢在初次再结晶过程中的组织和结构变化,包括晶粒长大情况、取向差、重合位置点阵(CSL)及织构的变化。研究表明,820℃盐浴再结晶退火3 s时即完成再结晶,随即发生晶粒长大。在初次再结晶的开始阶段,主要织构是{111}112、{100}110和弱的高斯织构;随着退火时间增加,{100}110织构和高斯织构逐渐减弱,{111}112织构先增强后减弱,并向{111}110和{111}231转化,退火3 min以后出现的{012}001织构是一种促进二次再结晶发展并最终有利于提高二次再结晶磁感和降低铁损的织构。退火时间增加到3 min以后,CSL的∑3晶界比例增加。退火时间增加到30 min时,CSL的∑1晶界比例增加,同时,小角度晶界比例提高,大角度晶界减少。  相似文献   

14.
利用金相显微镜和EBSD技术分析研究了Fe-3.2%Si合金二次冷轧织构、(100)[001]立方取向晶粒形核、初次再结晶以及二次再结晶后立方织构的形成。结果表明,二次冷轧之后的织构主要为{111}<112>和{111}<011>,并存在少量的{112}<110>,同时在变形晶粒内部存在有接近{100}<001>取向的微区。冷变形晶粒内部各微区取向连续变化,并且逐渐向近立方取向靠近。冷变形晶粒内部立方取向的微区作为形核的核心,在退火过程中利用(100)晶粒低表面能和γ→α相变最终发展成为具有集中立方织构的柱状晶组织。  相似文献   

15.
冷轧板再结晶退火中组织和织构演变的研究   总被引:2,自引:1,他引:2  
薄板坯连铸连轧(CSP)热轧板料经热处理来适当调整组织后进行冷轧及退火,并运用电子背散射衍射(EBSD)技术研究了再结晶退火中组织和织构的演变.结果表明:发生再结晶的温度范围是530℃~590℃,590℃为完全再结晶温度;再结晶发生时冷轧变形基体和新晶粒取向的晶界角度差大约为25°~55°;{111}〈110〉、{111}〈112〉取向在再结晶初期和中期发生很大的变化,而{001}〈110〉、{112}〈110〉取向在再结晶后期才发生很大的变化;EBSD检测的结果分析可得{001}〈110〉、{112}〈110〉、{111}面取向储存的变形能依次增加.  相似文献   

16.
以实验室模拟CSP连铸连轧工艺制备的热轧硅钢为基板,通过实验室常化、冷轧和初次再结晶退火实验,采用XRD和EBSD技术对样品从热轧到初次再结晶阶段的织构演变进行了研究。结果表明:GOSS晶粒起源于热轧的次表层,沿着次表层到中心层逐渐降低,热轧板中心层主要为{001}110织构。一次冷轧后,次表层存在强的{001}110和{112}110织构;1/4层存在强的{001}110和{112}110以及较强的{111}112织构;中心层则只存在强的{001}110织构。初次再结晶后,硅钢形成了强点{111}112织构的γ织构,GOSS织构再次出现,且分布在{111}112织构周围。GOSS晶粒周围以35°~55°大角度晶界为主,同时还有很高的Σ3和Σ5重合位置点阵。  相似文献   

17.
工艺参数对冷轧无取向硅钢再结晶织构的影响   总被引:1,自引:0,他引:1  
分析了硅含量为2.0 wt%的高牌号冷轧无取向硅钢冷轧变形量和不同退火温度对再结晶织构及晶粒尺寸的影响。结果表明,热轧板表面与心部组织和织构的差异对后续冷轧和再结晶退火的织构和晶粒尺寸有明显影响。热轧板表面的退火态晶粒组织使其织构转变滞后于心部,并可造成最终退火后较强的{001}〈110〉织构和均匀的{111}织构,有利于磁性的改善。提高冷变形量会增加再结晶形核率而减小晶粒尺寸,提高再结晶温度不明显改变再结晶织构但增大晶粒尺寸,但应防止过高温度下析出相粒子的回溶。分析表明,热轧板常化工艺,以及二次冷轧加中间退火工艺均有利于改善钢板成品织构,进而改善钢板磁性能。  相似文献   

18.
使用X射线衍射技术研究冷轧变形量和退火温度对Ni47Ti44Nb9合金一次冷轧和二次冷轧板织构和性能的影响。结果表明,在冷轧变形量小于35%时,一次冷轧板的织构主要为{111}-110-,与热轧态织构不同,随冷轧变形量的增加,织构取向密度略有提高;二次冷轧板主要织构为{111}-110-,在-110-//RD取向线上从{111}-110-延伸到{110}-110-,二次冷轧使织构取向密度获得较大提高。当二次冷轧板材在高于500℃退火时,其主要织构为{111}-112-再结晶织构,700℃、60 min炉冷样品织构的取向密度明显高于相同制度下水淬样品织构的取向密度。  相似文献   

19.
利用背散射衍射技术(EBSD),在一段式840 ℃不同时间脱碳退火条件下,研究了基于CSP工艺取向硅钢初次再结晶过程中的组织和结构变化。结果表明,在初次再结晶退火时间为4 min时织构类型较多,分别为{332}<`533>、{554}<225>、{111}<110> 、{001}<100>、 {111}<112>、{001}<110>、{110}<001>、{110}<110> 、 {112}<110>、{110}<112>、{112}<1`10>、{012}<001>和{111}<231>等。当初次再结晶退火时间延长为5 min时, {111}<112>取向晶粒数量明显增多,而{332}<`533>和{012}<001>取向晶粒比例下降。同时Σ3、Σ5和Σ9晶界比例升高,小角度晶界比例较少,而大角度晶界比例较多,这将有助于在二次再结晶退火时发生高斯织构。继续延长退火时间到6 min以后,Σ3、Σ5和Σ9晶界比例下降,小角度晶界比例提高,此时再结晶晶粒长大。  相似文献   

20.
采用热力模拟平面压缩实验和电子背散射衍射(EBSD)组织分析测试方法,研究了新型Al-Zn-Mg-Cu高强铝合金热压缩变形以及退火微观组织和织构。结果表明,在变形温度为350℃,应变速率为0.1 s~(-1)的条件下,合金微观组织演变机理为动态回复和大应变几何动态再结晶,出现旋转立方织构{001}110和黄铜织构{111}110,分别沿着α-取向线和β-取向线分布;退火后旋转立方织构减少,黄铜织构增多,旋转立方织构沿着α-取向线向黄铜织构转变。在变形温度为420℃,应变速率为0.1 s~(-1)的条件下,合金变形组织较均匀,再结晶晶粒分布在变形剧烈的晶界或三角晶界处,出现的织构种类主要有旋转立方织构{110}110、黄铜型{011}211织构;退火过程中发生亚动态再结晶,旋转立方织构强度增强,黄铜型{011}211织构有向高斯织构方向移动的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号