首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用加压碳化体系制备粒径均一、高分散性纳米碳酸钙材料。考察氢氧化钙浓度、表面活性剂添加量、反应温度、CO2压力对制备纳米CaCO3粒子尺寸和分散程度的影响,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、Zeta电位和傅立叶变换红外光谱(FT-IR)对制备的纳米碳酸钙粒子进行表征。结果表明,最优加压碳化反应条件是Ca(OH)2质量浓度为2%、表面活性剂添加量为3%(占碳酸钙理论产量的百分比)、反应温度为40℃、CO2压力为6 MPa,所得立方形碳酸钙平均粒径为117 nm,晶型为方解石型碳酸钙。碳化反应加入表面活性剂十六烷基三甲基溴化铵(CTAB)使CaCO3表面形成的正电荷增大至+37.7 mV并高于标准值30 mV,表明制备的CaCO3产品具有良好的分散性且稳定。通过FT-IR和Zeta电位对CTAB改性前后CaCO3纳米粒子进行表征,探讨了CTAB对合成纳米CaCO3分散性的影响机理,为纳米碳酸钙制备提供了一种新的方法。  相似文献   

2.
王江  赵冬涛  李光  符新 《弹性体》2005,15(1):12-15
采用CaO、CO2和天然胶乳等为主要原料,将纳米CaCO3的制备工艺和NR的制备工艺相结合,在可控反应条件下先将Ca(OH)2与CO2反应制备纳米CaCO3乳液再与天然胶乳共混、共凝制备纳米CaCO3/NR复合材料。研究了不同结晶控制剂对CaCO3粒径和形态以及CaCO/3NR复合材料力学性能的影响。结果表明,Na5P3O10是制备纳米CaCO3/NR复合材料最适宜的结晶控制剂。  相似文献   

3.
以丁苯胶乳和纳米碳酸钙浆料(总固物质量分数均为10%)为原料,以硬脂酸钠与凝聚剂CaCl2反应生成的硬脂酸钙为隔离剂,采用凝聚共沉法制备了纳米碳酸钙填充型粉末丁苯橡胶[P(SBR/CaCO3)],考察了P(SBR/CaCO3)粒径的影响因素,并研究了纳米碳酸钙在SBR中的分散状况。结果表明,在硬脂酸钠为4份、纳米碳酸钙为100份,分散剂/纳米碳酸钙(质量比)为0.04、凝聚搅拌速率为400 r/min、凝聚剂滴加速率为4.5 mL/min的条件下,制得P(SBR/CaCO3)中的纳米碳酸钙在基体中分散均匀,且粒径基本约为50 nm。  相似文献   

4.
以K2CO3、纳米CaCO3(自制)为原料,K2CO3的负载质量分数为50%,在750℃焙烧3 h得到纳米K2CO3/CaO固体碱催化剂,并通过XRD、FT-IR及TG-DSC等手段进行确认.再用该催化剂催化制备生物柴油,结果表明:制备生物柴油的最佳条件为温度70℃,质量分数3%的纳米K2CO3/CaO,醇油摩尔比12...  相似文献   

5.
钾长石-硫酸钙-碳酸钙热分解体系的再探索   总被引:6,自引:4,他引:6  
对钾长石-硫酸钙-碳酸钙体系提钾反应进行了热力学计算,系统研究了物料配比、焙烧温度、反应时间和Na2SO4添加量对热分解体系的影响,最后得出物料摩尔配比为n(钾长石):n(CaSO4):n(CaCO3)=1:1:14,在1423K温度下反应2h,钾长石中钾溶出率为92.02%.当Na2SO4添加量为2.94%时,反应温度可降为1273K,此时钾溶出率可达92%~94%.对焙烧产物进行了XRD分析,得出其主要物相为:K2SO4、3CaO·Al2O3和2CaO·SiO2,与物料摩尔配比1:1:14所确定化学反应的产物相吻合.  相似文献   

6.
纳米碳酸钙的湿法表面改性   总被引:8,自引:0,他引:8  
向纳米碳酸钙悬浮液中直接加入硬脂酸钠,制得改性纳米碳酸钙粉体,确定了改性剂硬脂酸钠的最佳用量为3 g/100 g CaCO3、最佳改性时间(20-30 min)、最佳改性温度(70-80℃)。用红外光谱、扫描电镜等分析手段进行了验证,实验表明,每100 g改性纳米碳酸钙的吸油值降至35.2 g,而活化度增至90.2%,大大提高了碳酸钙的活性。  相似文献   

7.
以自制磷石膏脱硫残渣(主要成分为氧化钙)为原料,气液合成反应法制备碳酸钙晶须.通过单因素实验考察影响碳酸钙晶须形貌的因素,以晶须的长度和长径比为考察指标,确定了优化工艺条件:反应温度80℃、CO2流量35 mL/min、MgC12浓度0.4mol/L、CaO浓度0.4 mol/L、搅拌转速250 r/min、加入晶型控制剂反应时间20 min,在此条件下制备的碳酸钙晶须长度可达35 ~ 45μm,长径比为14~ 18.  相似文献   

8.
在醉相中用具反应活性的甲基丙烯酸(MAA)对纳米碳酸钙(CaCO3)进行表面处理,制成分散体系。研究了MAA用量、pH值、分散时间、温度等对分散体系稳定性及形态的影响。TEM分析表明,在醉相中用10份的MAA对纳米CaCO3粒子进行处理,可以达到较好的分散效果;在原位本体聚合制得的聚苯乙烯(PS)/纳米CaCO3复合材料中,纳米CaCO3粒子能均匀分散,粒径在100 nm以内。纳米CaCO3能较好地增韧增强PS/纳米CaCO3复合材料,含7% -8%,纳米CaCO3的原位复合材料的冲山强度和拉伸强度分别为纯PS的258‘%,和311%,  相似文献   

9.
纳米CaCO3合成条件的正交实验   总被引:2,自引:0,他引:2  
采用正交实验设计方法,通过SEM分析,研究了反应温度、Ca(OH)2浓度、不同添加剂及其加入量等因素对CaCO3的结晶形态和粒径的影响, 得出合成立方晶形纳米CaCO3的优化反应条件为:反应温度10℃、碳化液Ca(OH)2浓度0.25 mol/L、以EDTA-2Na为添加剂、 添加量为EDTA-2Na:CaO = 3:1000. 添加剂的加入量少,不足以抑制CaCO3的生长;而加入量过多,则容易产生凝聚. 随着反应温度升高,CaCO3的结晶呈现高面网密度的晶体形态.  相似文献   

10.
研究了纳米CaO含量对CO2吸附剂微观结构和吸附性能的影响。以纳米CaCO3和铝溶胶为前驱体配制混合浆料,采用挤条方法制备CaO含量为6%~100%的CO2吸附剂颗粒,微观结构性能测试结果表明:CaO含量从6%提高到46%,比表面积从151.3 m2.g.1下降到8.1 m2.g.1,孔容从0.41 cm3.g.1下降到0.07 cm3.g.1,孔径从6.05 nm提高到12.39 nm。提高到CaO含量46%以上,吸附剂比表面积和孔结构没有变化,接近纯纳米CaO。当CaO含量超过27%后,氧化铝呈非晶形。吸附性能测试结果表明:随着CaO含量从12%提高到83%,吸附容量从1.02 mol CO2.kg.1增加到7.05 mol CO2.kg.1,吸附速率提高。研究结果还表明:CaO含量对纳米CaO基CO2吸附剂的微观结构和吸附性能的影响呈非线性关系。与纯CaO相比,加入少量氧化铝能提高吸附剂对CO2的吸附容量稳定性和吸附速率。  相似文献   

11.
用无水碳酸钠和无水氯化钙为原料,以Ca2 -H2O-CO2-3反应系统生成碳酸钙沉淀,按碳酸钙与水以质量比为1∶ 10加入蒸馏水,置冰箱中(-20℃)静态冷冻12h,取出在室温下解冻,过滤后得到样品.TEM和XRD测试结果表明:粒子基本呈球形,晶体粒径约为40~70 nm,所得产物为方解石型CaCO3.同时提出了"冰切割"机理,并对其形成进行了初步探讨,得出了冰冻-解冻制备纳米碳酸钙的新方法.  相似文献   

12.
原位化学合成法制备超高分子量聚乙烯/碳酸钙复合材料   总被引:1,自引:0,他引:1  
采用原位化学合成法在改性的超高分子量聚乙烯(UHMWPE)粉末表面生成碳酸钙(CaCO3)颗粒,经模压或柱塞挤出制备UHMWPE/CaCO3复合材料.静态接触角、扫描电子显微镜和傅立叶红外光谱分析表明,UHM-WPE经丙烯酸改性后,表面接枝上大量的O-H、C=O、C-O等极性官能团,Ca2+、CO2-3 吸附在UHMWPE粉末表面生长出纳米CaCO3颗粒.热重分析表明,提高搅拌速率、先滴加含Ca2+溶液、提高溶液中的Ca2+和CO2-3与UHM-WPE的质量比和适量的偶联剂均有利于提高复合材料中CaCO3的负载率.力学性能和热性能测试表明,原位化学合成法比机械共混法制备的UHMWPE/CaCO3复合材料具有更高的拉伸性能、弯曲性能及热变形温度,当CaCO3的质量分数为9.5%时,原位化学合成法制备的UHMWPE/CaCO3复合材料的拉伸性能和弯曲性能达到最大,热变形温度为106℃.  相似文献   

13.
在浸没循环撞击流反应器中,以纯碱与硝酸锌反应-沉淀制得前驱体,经煅烧后得到纳米氧化锌产品。通过正交设计实验研究了Zn(NO3)2浓度、反应温度、反应时间、Na2CO3与Zn(NO3)2摩尔比等因素对产品收率的影响。初步确定了制备纳米氧化锌的最优工艺条件:Zn(NO3)2浓度1.5 mol/L,反应温度60℃,反应时间1 h,Na2CO3与Zn(NO3)2摩尔比1.3∶1;该条件下锌收率可达94%。制得的氧化锌产品经XRD表征,其纯度较高;经TEM表征,其形貌为球形或接近球形;在最优工艺条件下制取的产品平均粒径为20 nm。建立了相关工艺条件与产品收率的数学关系式。  相似文献   

14.
李国华  陈树江  田琳  郭建 《硅酸盐通报》2015,34(5):1445-1448
本文研究了利用CO2处理镁钙砖表面的防水化效果,利用XRD检测了新生成相的矿物组成,采用SEM观察和分析了新生成相的微观形貌分布,应用煮沸实验法测试试样的防水化效果,得出以下结论:用CO2处理镁钙砖表面,当CO2流量为5 L/min,反应时间为60 min,处理温度为600℃时镁钙砖的抗水化效果最好;当CO2流量为5L/min,反应温度为600℃时,反应时间越长镁钙砖的抗水化效果越好;通过XRD衍射分析结果可知,不同温度处理后镁钙砖表面都生成了CaCO3,反应温度越高衍射峰越强,CaCO3含量越大;通过扫描电镜分析可知CO2处理后的镁钙砖表面反应层为CaCO3,并且随着反应温度的升高,试样表面的反应层厚度逐渐增加.  相似文献   

15.
聚酯型超分散剂在聚合物中的应用   总被引:4,自引:0,他引:4  
采用聚酯型超分散剂对碳酸钙(CaCO3)进行表面处理,并用其填充改性聚氯乙烯(PVC)和聚丙烯(PP),研究了超分散剂用量、聚合度对复合材料性能的影响。结果表明:超分散剂处理CaCO3的最佳用量与碳酸钙的粒径和表面特性密切相关,处理纳米CaCO3、轻质CaCO3、重质CaCO3的最佳用量分别为4%、2.0%和1.5%;超分散剂处理的纳米CaCO3填充改性PVC具有明显的增强增韧作用,对PVC的改性效果比PP好;超分散剂的最佳聚合度为7。  相似文献   

16.
定-转子反应器制备纳米碳酸钙   总被引:5,自引:1,他引:4  
结合定-转子反应器的结构及特点,提出了定一转子反应器制备纳米碳酸钙的新工艺。采用Ca(OH)2-H2O-CO2多相反应体系,考察了气液逆流及并流操作对碳化反应时间的影响。XRD分析结果表明产品为方解石型碳酸钙;通过TEM观测可知,产品为平均粒径50-60nm的立方形纳米碳酸钙。  相似文献   

17.
设计了一种涡旋脉冲式反应装置,分析了气-液或气-液-固多相体系在涡旋脉冲式反应装置中的流动状态及特点。采用Ca(OH)2—H2O—CO2气-液-固反应体系考察了该涡旋脉动式反应装置的性能。实验结果表明,采用纯CO2气体或CO2气体含量为30%的混合气体均可以制备平均粒径为40-50nm的纳米CaCO3产品,比传统工艺制备的纳米CaCO3的平均粒径小,粒度分布更窄。  相似文献   

18.
本文在磷石膏生产硫酸工艺基础上,采用磷石膏钙渣为原料制备高品质轻质碳酸钙,结果表明:在Ca(OH)2乳液质量浓度为90g/L,碳化温度为30℃,CO2流量为1.2L/h,碳化搅拌速度为2100r/min的条件下,制备的碳酸钙产品的沉降体积和pH值最优。电镜扫描发现,产品粒径大小均匀,呈球形。理化分析其品质达到HG/T2226-2000《工业沉淀碳酸钙》优等品标准要求。  相似文献   

19.
综合热分析法研究催化剂对煤粉燃烧过程的影响   总被引:1,自引:0,他引:1  
利用综合热分析仪研究了Ce2(CO3)3, CeO2, CaCO3, CaO 四种化合物对煤粉燃烧过程的影响. 重点研究了稀土金属化合物Ce2(CO3)3在不同添加量和不同粒度时对煤粉燃烧过程的影响. 结果表明,Ce2(CO3)3能够显著促进煤粉的燃烧过程,降低着火点温度. 添加量为1.0%时,煤粉着火温度降低约30℃,助燃性能优于其他3种催化剂. 在添加量小于1.0%时,Ce2(CO3)3添加量越大,着火温度越低. 在Ce2(CO3)3不产生团聚的情况下,催化剂粒径越小,煤粉的着火温度越低.  相似文献   

20.
提出了脱硫石膏-碳酸钙熔浸富钾板岩回收硫酸钾的可行工艺。对钾长石-硫酸钙-碳酸钙体系的热分解反应进行了热力学和动力学研究,结果表明该体系焙烧过程的可能总化学反应式为:2KAlSi3O8+CaSO4+14CaCO3→K2SO4+6Ca2SiO4+Ca3Al2O6+14CO2。焙烧动力学符合三维内扩散过程控制的Ginstling-Brounshtein动力学模型,其模型方程为1-2/3α-(1-α)2/3=1 386.84e-138 070/RT t,活化能Ea=138.07kJ/mol。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号