首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的研究不同沉积压力对磁控溅射La-Ti/WS_2复合薄膜微观结构及摩擦学性能的影响。方法采用非平衡射频磁控溅射法制备WS_2薄膜和La-Ti/WS_2复合薄膜。利用扫描电镜(SEM)和X射线衍射仪(XRD)对薄膜微观形貌、成分和晶向结构进行表征。用纳米压痕仪、摩擦磨损试验机和白光干涉三维形貌仪测试薄膜的力学性能和摩擦磨损性能。结果掺杂La和Ti可以改善WS_2复合薄膜的微观结构。在给定的沉积压力下,La-Ti/WS_2复合薄膜均呈岛状生长模式,组织均匀,且排列较为紧凑,结构致密性好。随着沉积压力的增大,WS_2(002)衍射峰向高θ值偏移,晶面间距减小,晶格发生收缩。复合薄膜的硬度和弹性模量随着沉积压力的增大,先增大后减小。沉积压力为1.2 Pa时,La-Ti/WS_2复合薄膜的摩擦系数低至0.07左右,磨损率低至2.45×10~(–8) mm~3/(N·m)。结论沉积压力对La-Ti/WS_2复合薄膜的性能有较大影响,合适的沉积压力可以提升La-Ti/WS_2复合薄膜的摩擦磨损性能。  相似文献   

2.
要满足航天器机械转动部件在恶劣工况下的工作,需研制高硬度、低摩擦系数的固体润滑薄膜。采用非平衡磁控溅射法分别制备了纯WS2薄膜、Ti掺杂WS2复合薄膜和La-Ti掺杂WS2复合薄膜。分析了薄膜的微观形貌、成分、硬度和摩擦学性能。结果表明,与纯WS2薄膜和Ti/WS2复合薄膜相比,La-Ti/WS2复合薄膜的微观结构更加致密。La-Ti/WS2复合薄膜的硬度H和弹性模量E也显著提高。此外,La-Ti/WS2复合薄膜的摩擦系数减小,并且H/E比值增大,La-Ti/WS2复合薄膜的磨损率降低。结果表明,La的掺杂有助于在摩擦接触表面形成稳定的转移膜,提高La-Ti/WS2复合薄膜的耐磨性和承载能力。  相似文献   

3.
高温条件下WS2易于氧化生成WO3,导致WS2固体润滑薄膜的摩擦学性能受到较大影响。为改善WS2固体润滑薄膜在高温条件下的摩擦学性能,采用非平衡磁控溅射技术制备了共掺杂La-Ti/WS2复合薄膜,研究了靶功率对磁控溅射La-Ti/WS2复合薄膜结构和高温摩擦学性能的影响。利用扫描电镜(SEM)、X射线衍射仪(XRD)、纳米压痕仪和X射线光电子能谱仪(XPS)分析了薄膜微观形貌、成分、力学性能、微观结构。利用高温摩擦磨损试验机研究了复合薄膜的高温摩擦学性能。结果表明,高温环境下,靶功率为20W时La-Ti/WS2复合薄膜表现出优异的摩擦学性能。此时,复合薄膜H/E值最大,摩擦系数最小,平均为0.012,磨损率最低为1.56×10-8mm3/N·m,这主要归因于高温下摩擦界面产生的稀土氧化物,促使La-Ti/WS2复合薄膜的摩擦磨损机制发生了改变,使得WS2在高温受破坏的情...  相似文献   

4.
利用非平衡磁控溅射技术在镜面抛光的SCM415渗碳淬火钢基片上沉积了无掺杂类金刚石(DIE)薄膜和不同含量Ti掺杂类金刚石(Ti-DIE)薄膜.利用AFM、SEM、TEM对薄膜的微观结构与形貌进行了观察,利用纳米硬度计、摩擦磨损试验仪及纳米划痕仪测试了薄膜的显微硬度、摩擦系数及薄基结合强度.结果表明:随着Ti的掺杂,薄膜硬度先迅速降低,然后保持不变,在Ti含量为25at%时薄膜硬度出现回升,膜基结合强度随Ti的掺杂呈单调增强趋势.与无掺杂类金刚石薄膜相比,掺杂Ti后薄膜表面微观凸凹增多,摩擦系数增大.对于Ti-DIE薄膜来说,随着Ti掺杂量的增加,摩擦系数出现减小的趋势.其原因在于Ti掺杂量的增加使Ti-DLC薄膜变得更加致密,同时Ti的掺杂还有利于弥补基体表面的凸凹缺陷,使薄膜变得更平滑.  相似文献   

5.
掺Ti量对类金刚石薄膜机械性能的影响   总被引:3,自引:3,他引:0  
采用非平衡磁控溅射技术,通过改变Ti靶溅射电流,在不锈钢衬底表面沉积了不同掺Ti量的类金刚石薄膜(Ti-DLC),研究了掺Ti量对薄膜的显微硬度、弹性模量、膜/基结合强度、断裂韧性及摩擦磨损行为的影响。结果表明:DLC薄膜掺杂Ti后,硬度明显提高,且随着Ti靶溅射电流的增大,薄膜硬度先增加、后降低,Ti靶溅射电流为1.5A时,薄膜硬度最高;掺杂适量的Ti,可以明显改善DLC薄膜的膜/基结合强度和断裂韧性,并能明显降低DLC薄膜的摩擦系数。  相似文献   

6.
目的探究Ti含量对MoS2-Ti复合薄膜高温摩擦学性能的影响,制备高温摩擦性能良好的MoS2-Ti复合薄膜。方法采用射频和直流双靶共溅射技术沉积了不同Ti含量的MoS2-Ti复合薄膜,研究了Ti含量对MoS2-Ti薄膜微观结构和力学性能的影响,进一步探究了MoS2-Ti复合薄膜在大气环境下的高温摩擦学性能。采用能谱仪(EDS)、X射线衍射仪(XRD)和扫描电子显微镜(SEM),对薄膜的成分、晶相结构及微观形貌进行分析。利用显微维氏硬度计测试薄膜的力学性能,通过UMT-TriboLab摩擦磨损试验机评价薄膜的摩擦磨损性能。此外,采用SEM、拉曼光谱仪(Raman)和X射线光电子能谱仪(XPS),对薄膜的磨痕形貌及对偶球转移膜的成分进行分析。结果Ti掺杂促进了MoS2薄膜以(002)晶面择优取向生长,且提高了薄膜的致密度,薄膜硬度从70HV提升到350HV。MoS2-Ti复合薄膜在高温环境下的摩擦性能,随Ti含量的增加呈先上升后下降的趋势,其中Ti原子数分数为6.81%的MoS2-Ti复合薄膜具有较低的摩擦因数和磨损率。通过对转移膜的成分进行分析,发现处于300℃高温环境下,Ti原子数分数为13.51%的MoS2-Ti复合薄膜由于在摩擦过程中生成的氧化物较多,其耐磨性能开始下降。结论Ti含量对MoS2-Ti复合薄膜的高温摩擦学性能有明显的影响,掺杂适量Ti能显著提高MoS2薄膜在大气环境下的高温摩擦学性能。  相似文献   

7.
目的提高TA2钛合金的耐磨减摩性能,并研究添加WS_2对激光熔覆Ti/TiC耐磨复合涂层的影响。方法以Ti+TiC和Ti+TiC+WS_2两种复合粉末为预置原料,采用激光熔覆技术在TA2合金表面制备出两类复合涂层,并采用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)、硬度计和摩擦磨损试验机,系统地分析了添加WS_2前后涂层的物相、组织、显微硬度及摩擦学性能。结果 Ti+TiC复合粉末的激光熔覆涂层的主要物相包含α-Ti和TiC,涂层的显微硬度为1162HV0.5。WS_2添加后,涂层中生成了新增强相(Ti,W)C_(1-x)及自润滑相Ti2SC和少量的TiS,涂层的显微硬度为1052.3HV0.5,约为TA2基体(180HV0.5)的5倍;此外,涂层的磨损率由未添加WS_2时的5.38×10~(-5) mm~3/(N·m)上升到15.98×10-5 mm~3/(N·m),耐磨性能有所下降但仍远低于基体(磨损率为66.63×10~(-5)mm~3/(N·m)),同时摩擦系数显著下降,由之前的0.49下降到0.34;同时,Si_3N_4对磨球磨损表面光滑,没有明显塑性变形,其磨损机理为轻微的塑性变形和粘着磨损。结论添加WS_2的复合涂层相对于基体依然具有良好的耐磨性能,同时由于新生的自润滑相Ti_2SC、TiS的润滑效果,涂层表现出良好的自润滑耐磨性能。  相似文献   

8.
目的研究具有选择性键合作用的掺杂金属元素(Cu、Al、Ti)对类金刚石(DLC)薄膜的结构和摩擦学性能的影响。方法以高纯石墨及其与金属复合靶作为靶材,采用离子源镀膜技术分别在n-型(100)单晶硅片和抛光304不锈钢片基体上制备金属-DLC复合膜。采用514.6 nm氩离子激发源的Raman光谱仪,对金属-DLC复合薄膜进行拉曼光谱分析。采用努氏硬度计和表面轮廓仪测量计算薄膜的硬度和残余应力。采用原子力显微镜(AFM)观察DLC薄膜的表面形貌和结构。使用球-盘滑动磨损试验机对DLC复合薄膜进行摩擦学性能分析。结果类金刚石薄膜中掺入不同金属元素掺杂后,摩擦系数保持相对稳定,但磨损率存在较大差异。无掺杂DLC膜中的sp~3键含量最高,薄膜硬度高,残余应力大,在摩擦过程中易脱落。Ti-DLC金属复合膜的表面质量最好,结构致密,残余应力释放的同时保持较高的硬度,测得其磨损率最低,为0.13×10~(-15) m~3/nm。结论通过在DLC膜中掺杂不同键合能力的金属元素能够调控DLC薄膜的微观结构,改善薄膜的力学性能(硬度、残余应力),提高薄膜的抗磨损性能。薄膜的摩擦学性能与薄膜的微观结构与金属掺杂元素的存在形态有关。  相似文献   

9.
采用多弧离子镀膜设备制备了掺杂Cu的AlN/TiN-Cu纳米复合多层膜,利用FESEM、HRTEM和XRD分别表征了薄膜的微观结构和相组成,用压入法和划痕法确定了薄膜的硬度和膜/基结合力,研究了Cu对AlN/TiN-Cu复合多层膜微观结构和力学性能的影响。结果表明,Cu的掺杂对薄膜的微观结构有较大的影响。薄膜的平均晶粒尺寸随Cu含量的增加而逐渐减小。掺入少量Cu后,薄膜的硬度均有提高,但不同种类的薄膜有不同的临界载荷变化趋势,纳米复合单层薄膜的临界载荷有所增大,而纳米复合多层膜的临界载荷反而有所减小。  相似文献   

10.
利用非对称双极脉冲磁控溅射制备了不用Co-La掺杂量的Ti-Co-La-N纳米复合薄膜.分别用扫描电子显微镜、X射线衍射、纳米压痕仪、划痕仪以及摩擦磨损仪研究了薄膜的表面形貌、结合力、显微硬度和摩擦学性能.结果表明:复合薄膜主要有TiN相、Co2N相和LaN相组成;复合膜的纤维硬度达到14.61 GPa,低于TiN的显微硬度;复合薄膜的显微硬度和结合力都随着Co-La掺杂量的增加而降低;在高速钢基体上复合薄膜的摩擦系数达到了0.6.  相似文献   

11.
目的改善MoS_2薄膜的疏松结构,提高其硬度及摩擦磨损性能。方法采用离子源辅助磁控溅射技术在GCr15基体上沉积不同Zr含量的MoS_2-Zr复合薄膜,通过SEM分析薄膜的表面及截面形貌。采用EDS检测薄膜的成分,采用显微维氏硬度计测试薄膜的硬度,采用Rockwell-C硬度计进行压痕测试实验,采用球-盘式旋转摩擦磨损试验机评价薄膜的摩擦磨损性能。结果 MoS_2-Zr复合薄膜的致密程度和硬度随着Zr含量的增加而增大,其硬度值为300~500HV。复合薄膜与基体的结合力随着Zr含量的增加而增强,但当Zr含量过高时,结合力下降。含Zr原子数分数为15%的MoS_2-Zr复合薄膜具有最好的摩擦学性能,其平均摩擦系数为0.09,磨损率为9.33×10~7 mm~3·N~(–1)·m~(–1),耐磨寿命达5.25×105 r。结论 Zr的掺杂改善了纯MoS_2薄膜的疏松结构,提高了MoS_2薄膜的硬度和结合力,合适的Zr掺杂可以获得较低的摩擦系数和较长的耐磨寿命。  相似文献   

12.
非平衡磁控溅射掺Ti类金刚石薄膜的结构分析   总被引:4,自引:0,他引:4  
聂朝胤  张碧云  谢红梅 《金属学报》2007,43(11):1207-1210
采用非平衡磁控溅射沉积技术在SCM415渗碳淬火钢基片上沉积了无氢Ti掺杂类金刚石(Ti-DLC)薄膜和无氢高纯类金刚石(DLC)薄膜,通过调节Ti靶的溅射功率使获得的Ti-DLC薄膜Ti含量(原子分数)为1.9%-34%.利用Raman分光光谱仪、XPS,XRD、显微硬度计及纳米划痕仪分析研究了Ti-DLC的组织结构、显微硬度及薄膜附着力.结果表明,利用非平衡磁控溅射得到的Ti-DLC薄膜,在Ti含量小于25%时,Ti-DLC薄膜仍具有类金刚石薄膜的sp2,sp3结构,但Ti的掺杂促进了sp3键向sp2键的转变.掺杂的Ti以TiC纳米晶的形式存在于非晶态的DLC中.掺杂Ti后薄膜的硬度明显降低,而薄膜附着力明显改善;但是当Ti含量超过3%后,薄膜附着力无明显变化,硬度逐渐回升.  相似文献   

13.
陈强  张而耕  周琼  黄彪  梁丹丹  韩生  李耀东 《表面技术》2021,50(10):230-238
目的 研究Si、C单元素掺杂及其共同掺杂TiAlN涂层对涂层性能的影响.方法 基于阴极电弧+辉光放电技术,在SUS304不锈钢基体及硬质合金刀具上分别制备nc-(Ti,Al)N、nc-(Ti,Al)N/a-SiNx、nc-TiAlCN及nc-TiAlCN/a-SiNx/a-C纳米复合薄膜,通过SEM观察涂层的微观组织形貌,并借助EDS表征涂层的元素成分,用XRD分析涂层的物相构成,探究C、Si元素对涂层生长的影响.采用纳米硬度仪测试涂层的硬度,采用二维轮廓仪及三维形貌仪表征涂层的表面粗糙度及表面形貌,通过滑动摩擦磨损试验测定涂层的耐磨性,用纳米划痕仪表征涂层的摩擦系数及涂层与基体的结合强度,用铣削实验表征涂层的切削性能.结果 该技术制备的TiAlN涂层,内部晶相结构复杂,硬度为29.57 GPa,主要归因于Ti2AlN、Ti2N等硬质相及TiN0.3相的形成降低了涂层的晶格常数.此为首次报道通过物理气相沉积方法制备含TiN0.3相的涂层.TiAlSiN涂层的硬度最高,为37.69 GPa,且耐磨性最好,主要原因是Si的添加起到了细晶强化和晶界强化的作用.C掺杂TiAlN使涂层析出更多非晶相,涂层硬度降低.C、Si元素共同掺杂,使得nc-TiAlCN/a-SiNx/a-C涂层表现出较低的摩擦系数及表面粗糙度,但与基体的结合性能最差,nc-(Ti,Al)N/a-SiNx薄膜的结合强度最好.结论 涂层均提高了基体表面的显微硬度,Si、C元素的掺杂可使涂层的某些性能得以大幅提升,但在实际应用中,还需根据应用需求选择合适的涂层.  相似文献   

14.
为了阐明调制周期对薄膜微观组织及薄膜与基体结合力的影响,采用反应磁控溅射在Ti6Al4V基板上交替沉积了Ti层及TiN层制备了TiN/Ti多层膜。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度仪和划痕仪测量分析了薄膜的晶体结构、微观组织、硬度以及薄膜与基体之间的结合力。研究结果表明:TiN/Ti多层膜中均存在TiN,Ti和Ti2N 3种相。TiN/Ti多层膜均以柱状晶方式生长,在调制周期较大(5层)时,TiN和Ti层的界面清晰;随着调制周期的减小(层数增加),TiN和Ti层的界面逐渐消失。与单层TiN薄膜相比,多层TiN/Ti薄膜的硬度显著提高;但随着薄膜层数的增加,多层TiN/Ti薄膜硬度略微降低。当调制周期为80nm(30层)时,薄膜与基体的结合力明显提高,达到73N。  相似文献   

15.
采用离子注入结合低温离子渗硫法制备了MoS2/FeS复合薄膜,并借助扫描电子显微镜、X射线光电子能谱仪和纳米压痕仪对复合薄膜进行了表征。结果表明,复合薄膜呈微球结构,颗粒尺寸均匀,约为500 nm。复合薄膜主要由MoS2、FeS及少量的氧化物组成。基体与复合薄膜的硬度分别为6.57和7.89 GPa,弹性模量分别为223.8和246.2 GPa。相对基体复合薄膜的硬度及弹性模量分别提高约20%和10%,弹性特征值H/E亦相应提高了约10%,表明其较基体具有更高的磨损抗力。  相似文献   

16.
《铸造技术》2016,(5):918-921
采用真空电弧离子镀工艺在H13钢表面制备Ti Al N/Cr Al N复合涂层,利用划痕试验仪、盘式摩擦磨损试验机、金相显微镜和努氏硬度计分析Ti Al N/Cr Al N膜层的结合力和摩擦学性能,金相组织形貌和试样表面的显微硬度。结果表明,Ti Al N/Cr Al N复合薄膜表面组织分布均匀,结合致密,涂层与基体间的结合力是影响涂层承载能力的主要因素之一,Ti Al N复合涂层的摩擦性能优于H13基体和Cr Al N复合涂层的摩擦性能,Ti Al N/Cr Al N复合涂层的结合力分别为35 N和24 N,沉积有Ti Al N涂层试样表面摩擦系数最小,减摩效果最好,耐磨性能优越,并能有效地抵抗摩擦磨损。  相似文献   

17.
采用Al和TiC靶通过磁控共溅射方法制备了Ti:C≈1的不同Ti和C含量的铝基复合薄膜,研究了Ti和C含量对薄膜微观结构和力学性能的影响.结果表明:Ti和C的共同加入使复合薄膜形成了同时具有置换固溶和间隙固溶特征的"双超"过饱和固溶体,复合薄膜的晶粒尺寸在较低的溶质含量下就迅速减小到100 nm以下,并随溶质含量的增加继续减小.相应地,薄膜的硬度也从纯Al的1.3 GPa迅速提高,在含0.6%(Ti,C)时可达到2.1 GPa,并在含6.4%(Ti,C)时达到最高值7.0 GPa.随溶质含量的进一步提高,复合薄膜逐渐呈现非晶态,硬度也略有降低.研究结果显示了Ti和C双超过饱和固溶对铝基薄膜具有显著的晶粒细化作用和强化效果.  相似文献   

18.
目的通过掺杂适量Al元素来固溶强化Cr N薄膜,从而提高薄膜的抗氧化性能和热稳定性。方法采用高功率脉冲磁控溅射和脉冲直流磁控溅射复合镀膜技术制备了Cr Al N薄膜,利用XRD、纳米压痕仪、应力仪、摩擦磨损试验机系统地研究了不同基体偏压对CrAlN涂层结构和力学性能的影响。结果所有CrAlN涂层均以fcc-(Cr,Al)N相为主,且随着基体偏压的增加,沿(111)晶面生长的衍射峰逐渐减弱,并向小角度偏移;薄膜压应力显著增加,最大值为-2.68GPa;薄膜硬度先上升后下降,在基体偏压为-30V时,硬度达到最大值22.3 GPa;H/E值和H~3/E~(*2)值随着基体偏压的增加,近似线性增大,当偏压为-120 V时,均达最大值0.11、0.21 GPa,同时摩擦系数和磨损率逐渐减小。结论当基体偏压为-120 V时,CrAlN薄膜具有最佳的耐磨性能,H/E和H~3/E~(*2)在一定程度上可评价涂层的耐磨性。  相似文献   

19.
目的 提高单一成分WS2薄膜的力学和摩擦学性能。方法 采用多靶磁控溅射方法制备不同Ti含量的WS2–Ti复合薄膜。利用X射线能谱仪(EDS)、拉曼光谱仪(Raman)、X射线光电子能谱仪(XPS)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、纳米压痕仪,对薄膜的成分、化学态、晶体结构、形貌以及力学性能进行表征,并利用球–盘摩擦试验机检测该系列薄膜在大气和真空环境下的摩擦学性能。结果 掺杂元素Ti显著改善WS2薄膜的微观结构、力学性能和摩擦学性能。随着Ti含量的增加,WS2薄膜的结晶度下降,致密度增加,其硬度和杨氏模量分别从0.25 GPa和16.60 GPa增加到3.52 GPa和59.00 GPa。Ti原子数分数为7.17%时,复合薄膜的磨损率在真空和大气环境下分别低至0.10×10-15 m3/(N·m)和2.66×10-15m3/(N·m)。结论 在真空摩擦试验中,WS2基薄膜的...  相似文献   

20.
利用诱导型等离子体辅助双靶磁控溅射法在Si(100)基板表面沉积Cu含量(原子分数)为0~10.0%的Ti—Cu—N膜,研究了Cu含量对薄膜结构及硬度的影响.结果表明,添加少量Cu可极大地提高薄膜硬度.Cu含量为2.0%的Ti—Cu—N薄膜具有超硬特性,硬度HV达到42,约为纯TiN薄膜硬度的2倍.超硬质Ti—Cu—N薄膜为nc-TiN/nc—Cu纳米复合薄膜,具有柱状晶结构.薄膜的超硬特性源于薄膜的纳米复合结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号