首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
通过分析铜渣特性、冷却方式,指出冷却速率对铜的选出影响至关重要,应控制在1~3℃/min。磨浮结合的选矿法是目前主要采用的铜渣贫化工艺,可将尾矿中铜含量控制在0.3%~0.5%。贫化铜渣的处理,有效分离铁、硅、锌是难点,采用转底炉直接还原结合磨选工艺,可以得到TFe含量65%以上,MFe含量53%以上的磁性矿粉,铁回收率接近90%。磁性矿粉可冷固结成型用做高炉、转炉或电炉原料,尾渣用于建材行业。建议国家出台政策支持指引,以钢铁企业为主导,积极推进铜渣的综合利用。  相似文献   

2.
通过分析铜渣特性、冷却方式,指出冷却速率对铜的选出影响至关重要,应控制在1~3℃/min。磨浮结合的选矿法是目前主要采用的铜渣贫化工艺,可将尾矿中铜含量控制在0.3%~0.5%。贫化铜渣的处理,有效分离铁、硅、锌是难点,采用转底炉直接还原结合磨选工艺,可以得到TFe含量65%以上,MFe含量53%以上的磁性矿粉,铁回收率接近90%。磁性矿粉可冷固结成型用做高炉、转炉或电炉原料,尾渣用于建材行业。建议国家出台政策支持指引,以钢铁企业为主导,积极推进铜渣的综合利用。  相似文献   

3.
某企业镍电解精炼除铁工艺经过改造后,产出的黄钠铁矾渣中除镍铜钴铁外,其他杂质含量非常低。通过试验,这种黄钠铁矾渣中镍的回收率大于97%,铜的回收率大于92%,99%以上的铁进入终渣,可作为铁精矿销售。整个过程不产生废渣,有价金属综合利用率高。  相似文献   

4.
以闪速炉炼铜厂炉渣和模拟贫化电炉渣为对象,用物相分析和电子探针分析等方法,考察了渣中铜的存在形态与含量。得出:渣中铜主要是以硫化物形态机械夹杂存在;添加氧化钙可以减少渣中磁性铁含量,进而降低渣中以氧化物形态损失的铜。  相似文献   

5.
冰铜吹炼转炉渣中磁性铁(Fe3O4)的含量对电炉贫化弃渣含铜影响显著。为了降低返贫化电炉转炉渣中磁性铁的含量,本研究采用高温还原贫化法开展了实验室规模的转炉渣还原贫化试验研究,结果表明经还原预处理后Fe3O4的还原率达88%以上,还原后物料中Fe3O4含量低于5%。为创造弱还原气氛用于转炉渣的预处理,对60吨P-S转炉的烟气管路、固体还原剂及喷吹系统、燃烧保温系统等进行了改造,并进行工业生产实践。生产实践结果表明,渣含铜平均值由6.76%降至3.95%,实现了降低生产成本,减少金属损失的目的。  相似文献   

6.
准确测定钢渣中的磁性铁含量有利于提高钢渣磁选效率和评价磁选工艺的磁性铁回收效率。实验采用多级磁选分离的方法,通过测定钢渣磁选物以及尾渣的密度,并假设钢渣磁选物中非磁性相的密度与尾矿渣的密度相同,从而达到测定钢渣中的磁性铁含量的目的。实验选取了转炉渣、脱硫渣作为研究对象,分别测得两种钢渣的磁性铁含量为3.81%和3.72%(质量分数),平均误差为3.93%,并使用了行业标准(YB/T 140和YB/T 4188-2009)验证了测定结果的可靠性。XRD测定结果表明,磁选物的物相中含有较多磁性物,且钢渣的物相与尾渣一致,证明了测定方法假设是可行的。  相似文献   

7.
研究了三菱连续铜熔炼和吹炼工艺中所产生炉渣的微观组织与相图,以防止磁性氧化铁引发的一系列问题,诸如炉膛与流槽上的炉结积聚,熔体出口堵塞,渣粘度上升等等。根据这些研究结果,通过调整熔炼炉的硅酸盐渣中的二氧化硅和氧化钙含量以及吹炼炉的铁钙渣中的氧化钙含量,以达到降低、稳定弃渣含铜量,减少熔体出口及流槽的清理之目的。然而,这些改动有可能降低希望的炉结保护层厚度,从而缩短炉寿命。因此,开发了一种估测熔体内磁性氧化铁含量的方法,并将炉渣成分与温度控制在适当范围内,从而延长炉寿命,避免磁性氧化铁引发的问题。  相似文献   

8.
宋佥 《有色冶炼》2005,34(6):9-13,36
研究了三菱连续铜熔炼和吹炼工艺中所产生炉渣的微观组织与相图,以防止磁性氧化铁引发的一系列问题,诸如炉膛与流槽上的炉结积聚,熔体出口堵塞,渣粘度上升等等。根据这些研究结果.通过调整熔炼炉的硅酸盐渣中的二氧化硅和氧化钙含量以及吹炼炉的铁钙渣中的氧化钙含量。以达到降低、稳定弃渣含铜量。减少熔体出口及流槽的清理之目的。然而,这些改动有可能降低希望的炉结保护层厚度,从而缩短炉寿命。因此,开发了一种估测熔体内磁性氧化铁含量的方法,井将炉渣成分与温度控制在适当范围内,从而延长炉寿命,避免磁性氧化铁引发的问题。  相似文献   

9.
介绍了金川镍闪速炉渣电弧炉熔化一还原提取铁、镍、钴、铜等有价金属的试验研究。该工艺可控制二次渣含铁小于5%,铁的回收率在90%以上,镍、钴、铜的回收率在95%以上。  相似文献   

10.
以常规湿法炼锌工艺锌浸渣为研究对象,对比研究常压酸浸和加压酸浸条件下锌浸渣的酸性浸出减量化效果,以及渣中锌、铜和铟等有价金属的浸出率。结果表明,在常压酸浸条件下,渣量可减少65%以上,渣中锌含量可降至3%左右,锌、铜和铟的浸出率均在91%以上;在加压酸浸条件下,渣量可减少40%以上,渣中锌含量可将至2%以下,锌和铜的浸出率达到95%左右,但铟浸出率仅为70%左右,相对较低。常压酸浸过程锌浸渣中的铁绝大部分浸出,有利于铟的浸出;加压酸浸过程锌浸渣中的铁大量以铅铁矾的形式留在渣中,阻碍了铟的浸出。常压浸出液中铁含量较高,达到25 g/L以上;加压浸出液中铁含量较低,小于2 g/L,有利于后续浸出液中铜、铟的回收。常压浸出渣量少,有利于渣中铅、银的富集,可单独销售;加压浸出由于铁沉淀入渣,致使渣中铅、银富集比低,适合于铅锌联合企业返回铅熔炼炉。  相似文献   

11.
银电解液净化过程中产生的净化渣中铜含量较高,采用火法工艺处理,存在除铜周期长、金银直收率低的问题,而且产生的含金银烟灰需要二次处理,增加了处理成本。本文探索使用硫酸法处理银电解液净化过程中产生的净化渣。结果表明,采用硫酸法湿法工艺处理净化渣,控制硫酸浓度6%、反应温度75℃、反应时间2 h、液固比5∶1、食盐加入量为27.5 kg/t的条件,净化渣中铜的浸出率可达到99%以上,反应后液中银含量降到0.5 mg/L。生产实践中,浸出渣中银含量可稳定在70%以上,铜含量为0.4%以下,实现了银铜的分离。相较于传统处理工艺,本工艺具有操作简单,且具有良好的经济与环保效益。  相似文献   

12.
利用MLA矿物物相分析仪和光学显微镜,研究了不同粒度磁性钒渣的组成、渣铁分布、以及金属铁对焙烧—酸浸的影响。结果表明,磁性钒渣由金属铁相和高铁钒渣组成,分别占35.36%、64.64%,而金属铁含量2%时会明显降低提钒收率,提出了磁性钒渣碾磨—筛分—分离金属铁用于钒铁冶炼原料,高铁钒渣钙化焙烧—酸浸提钒的工艺技术方案,钒的焙烧—酸浸转化率86.16%,实现了钒、铁资源分类利用。  相似文献   

13.
铜转炉渣选别铜、铁,我们先后在试验室和工业生产中进行了两批试验。第一批试验证实,只有铜转炉渣采用缓冷才能得到较高的铜、铁选矿回收率;在第二批试验中,我们着重研究了二氧化硅含量对浮选效果的影响。通过一系列的试验表明:渣中SiO_2含量控制在18%左右,对铜、铁的选别是有利的。渣中SiO_2含量的降低,减少了硅酸铁  相似文献   

14.
针对刚果(金)某高硅、低铁氧化铜矿还原熔炼过程渣铜分离困难、铜收得率低等问题,研究了配加不同CaO和FeO含量对还原熔炼渣黏度的影响规律,并在此基础上优化了Iida黏度预测模型,为实现CaO-SiO2-MgO-Al2O3-FeO渣系黏度的精准控制提供支撑。结果表明,该熔炼渣黏度随CaO和FeO含量的增加而逐渐下降。调控终渣碱度大于0.5、FeO含量大于3%,可有效改善熔炼渣黏度。利用优化后的Iida黏度预报模型可在较大成分与温度范围内进行本体系熔渣黏度的预测,预报相对误差在10%以内。  相似文献   

15.
云南某铜冶炼渣属于火法冶炼过程中产生的水淬渣,含铜0.53%,含铁31.59%,含银7.5 g/t,锌含量2%左右;该水淬渣资源储量较大,实现资源化综合利用,对发展循环经济及环境治理意义重大。通过研究表明,采用浮选—高温还原焙烧的联合工艺流程,可以实现铜、银、铁及锌的综合回收,浮选精矿铜的回收率为35%、银的回收率30%;还原焙烧磁选铁精矿铁品位为72%,铁回收率为89%,烟尘中锌回收率为96%,全流程很好地实现了渣中主要有价金属的回收。  相似文献   

16.
以湿法冶炼高冰镍过程中产生的高冰镍浸出渣为研究对象,采用二氧化硫对高冰镍渣加压还原浸出,考察了初始硫酸浓度、液固比、通气方式、浸出温度和浸出时间对高冰镍渣还原浸出过程铜、铁行为的影响;对还原浸出液采用置换沉淀和冷冻结晶的方法,对还原浸出中铜和铁进行分离回收。结果表明:在初始硫酸浓度100 g/L、液固比6 mL/g、反应时间3 h、反应温度90℃、二氧化硫分压0.15 MPa的条件下,铁和铜的浸出率分别为99.35%、77.46%,浸出液中铁几乎全部为亚铁离子;在硫酸含量20~30 g/L、温度70℃、铁粉加入量5.7 g/L、反应时间40 min的条件下,对还原浸出液进行置换沉铜,沉铜率达到了99.70%,渣含铜为67.91%。在温度—10℃、保温时间20~30 min、初始硫酸浓度100 g/L的条件下,对沉铜后液进行冷冻结晶制备硫酸亚铁,铁沉淀率达到了72.6%,七水硫酸亚铁纯度达到了92.93%。  相似文献   

17.
铁矾渣还原焙烧制备磁铁矿的研究   总被引:2,自引:0,他引:2  
对某锌冶炼厂的铁矾渣进行了粉煤还原焙烧-磁选试验研究,考查了焙烧过程中Zn、Fe、S等主要元素的行为。研究结果表明,在900℃时还原焙烧可以产出磁性很强的磁铁矿,Zn转化为铁酸锌。超过900℃时会有有碱性硫化物生成。粉煤还原焙烧铁矾的最佳条件是:温度900℃,粉煤用量为45g/kg,焙烧时间75min。此时烧渣含S3.07%,含Fe55.94%,烧渣水浸后含S降低到1.47%。在最佳条件下进行焙烧—磁选,精矿含Fe在58.99%~58.72%之间,精矿中Zn含量均比尾矿高约1%,烧渣中大部分S与磁性产物在一起,磁选精矿含S在2.5%~3%之间。  相似文献   

18.
铜冶炼渣中的铁主要以铁橄榄石、硅酸铁的形式存在,铁品位含量高,嵌布粒度极细,综合利用难度大.采用磁选粗选、再磨、磁选精选、反浮选等工艺进行了从铜渣选铜尾矿中回收铁精矿和选煤重介质选矿试验,可获得产率为10.24%、铁品位为51.56%的合格铁精矿和产率为17.66%、铁品位为53.38%、密度为4.35 g/cm3选煤重介质.该工艺是铜冶炼渣中铁综合利用的一种新途径和新方法,具有良好的应用前景.  相似文献   

19.
某厂以300 t固定式阳极炉冶炼高品位废杂铜,产出的炉渣含铜率较高,在25%~35%之间,因缺乏炉渣冶炼回收装置,只能将这些炉渣直接折价对外销售,导致冶炼生产中铜损失较大。为了降低冶炼炉渣的含铜率,在分析该厂原料杂质成分和含量的基础上,结合铜冶炼原理,选择合适的渣型,试验不同造渣剂在冶炼时对渣含铜率的控制情况,最终探索出一种有利于控制渣含铜率的复合造渣剂。在工业生产试验中,分别从渣型选择、氧化时间、渣温控制、保温时间、造渣剂配比等方面对生产操作工艺进行优化,最终实现了将渣含铜率控制在18%以下的目标,可大幅减少炉渣销售损失。  相似文献   

20.
针对云铜冶炼加工总厂转炉渣返电炉贫化存在的问题,进行了铜转炉吹炼渣还原预处理工业试验。详细阐述了渣中磁性铁的还原率、渣含铜及渣还原前后物相、熔点、粘度的变化,分析了存在的问题,提出了优化思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号