共查询到17条相似文献,搜索用时 62 毫秒
1.
针对当前目标跟踪领域中如何准确迅速地对目标进行定位的问题,大部分流行跟踪器的核心内容是结合核方法去训练一个判别分类器来区分目标和周围环境。例如核相关滤波器算法(KCF)将傅里叶变换与核化判别分类器相结合来提升跟踪速度,以及引入TSK模糊逻辑系统(TSK-FLS)的模糊核相关滤波器(FKCF)算法来提高跟踪精度。一些基于KCF的改进算法对部分跟踪难题提出了解决方案,但这些算法在精度方面仍有一定的提升空间。针对此,在FKCF的基础上,从多核融合的角度推导出了一种新的多模糊核相关滤波器(MFKCF)。MFKCF继承了KCF高速的以及FKCF高精度的特性,将多项式核与高斯核进行模糊化,并且融合模糊化后的核函数作为新的目标核函数。由于上述两项改进,使所提算法在跟踪精度方面比KCF与FKCF更好。将KCF算法、FKCF算法与MFKCF算法在OTB50等4个数据集上的30个随机选取的视频进行了实验,实验结果表明MFKCF算法总体表现良好,10项常见属性上的精度均有提升。 相似文献
2.
针对传统单目标的核相关滤波器(KCF)跟踪算法在目标尺度变化的跟踪中存在的问题,提出了一种基于相关滤波器(CF)和尺度金字塔的多尺度核相关滤波器(SKCF)跟踪算法。首先通过传统KCF跟踪算法中分类器的响应计算当前目标是否受到遮挡,在未受到遮挡的情况下,对当前目标建立尺度金字塔;然后通过相关滤波器求取尺度金字塔的最大响应得到当前目标尺度信息;最后使用新目标图像为训练样本更新目标的外观模型和尺度模型。与核化的结构化输出(Struck)算法、KCF算法、跟踪-学习-检测(TLD)算法和多示例学习(MIL)算法进行对比,实验结果表明,所提出的多尺度核相关滤波器(SKCF)跟踪算法在五种算法中精确度和重合度都取到最高值。所提算法能够广泛应用于目标跟踪领域,对目标进行准确的跟踪。 相似文献
3.
针对分层Takagi-Sugeno-Kang (TSK)模糊分类器可解释性差,以及当增加或删除一个TSK模糊子分类器时Boosting模糊分类器需要重新训练所有TSK模糊子分类器等问题,提出一种并行集成具有高可解释的TSK模糊分类器EP-Q-TSK.该集成模糊分类器每个TSK模糊子分类器可以使用最小学习机(LLM)被并行地快速构建.作为一种新的集成学习方式,该分类器利用每个TSK模糊子分类器的增量输出来扩展原始验证数据空间,然后采用经典的模糊聚类算法FCM获取一系列代表性中心点,最后利用KNN对测试数据进行分类.在标准UCI数据集上,分别从分类性能和可解释性两方面验证了EP-Q-TSK的有效性. 相似文献
4.
当采用最小方差型的误差成本函数进行输入含噪系统的参数学习时,参数不能收敛至真值,利用包含噪声方差的误差成本函数可解决此问题.本文将此误差成本函数推广到多人单出系统,将之引入到模糊逻辑系统的参数学习中,并且输入输出数据中的噪声方差也通过学习而得到,不必进行多次测量.最后通过仿真对比验证表明了该方法的有效性. 相似文献
5.
为了进一步提升Takagi-Sugeno-Kang(TSK)模糊分类器在不平衡数据集上的泛化能力和保持其较好的语义可解释性,受集成学习的启发,提出面向不平衡数据的深度TSK模糊分类器(A Deep TSK Fuzzy Classifier for Imbalanced Data, ID-TSK-FC).ID-TSK-FC主要由一个不平衡全局线性回归子分类器(Imbalanced Global Linear Regression Sub-Classifier, IGLRc)和多个不平衡TSK模糊子分类器(Imbalanced TSK Fuzzy Sub-Classifier, I-TSK-FC)组成.根据人类“从全局粗糙到局部精细”的认知行为和栈式叠加泛化原理,ID-TSK-FC首先在所有原始训练样本上训练一个IGLRc,获得全局粗糙的分类结果.然后根据IGLRc的输出,识别原始训练样本中的非线性分布训练样本.在非线性分布训练样本上,以栈式深度结构生成多个局部I-TSK-FC,获得局部精细的结果.最后,对于栈式堆叠IGLRc和所有I-TSK-FC的输出,使用基于最小距离投票原理,得到ID... 相似文献
6.
基于模糊逻辑系统一般数学模型,利用最近邻聚类学习算法对样本数据进行自适应分组,并对系统进行训练,从而使模糊逻辑系统具有自学习功能。 相似文献
7.
8.
针对传统分类器的泛化性能差、可解释性及学习效率低等问题, 提出0阶TSK-FC模糊分类器.为了将该分类器 应用到大规模数据的分类中, 提出增量式0阶TSK-IFC模糊分类器, 采用增量式模糊聚类算 法(IFCM($c+p$))训练模糊规则参数并通过适当的矩阵变换提升参数学习效率.仿真实验表明, 与FCPM-IRLS模糊分类器、径向基函数神经网 络相比, 所提出的模糊分类器在不同规模数据集中均能保持很好的性能, 且TSK-IFC模糊分类器在大规模数据分类中尤为突出. 相似文献
9.
模糊系统随着输入维数的增加,其中模糊规则和辨识参数的数量将按指数级增长,针对这一问题,采用分层模糊系统是一种很好的解决方法,但分层模糊系统中各层的辨识变量没有明确的物理含义,无法进行合理的模糊化设计和解释。基于一种分层模糊系统,引用中心性TSK模糊系统思想,从而构造了一种新型的模糊系统。这种新型模糊系统保留了分层模糊系统的结构优势,极大地减少了模糊系统的模糊规则数量和辨识参数数量,又能对用到的内部参数进行很好的解释。并通过实例仿真表明基于中心型TSK模糊模型的分层模糊系统具有较好的逼近性能和更简单的结构。 相似文献
10.
11.
12.
13.
14.
基于模糊卡尔曼滤波的信息融合算法 总被引:1,自引:0,他引:1
应用自适应模糊逻辑系统(AFLS)原理,研究了一种基于卡尔曼滤波器的信息融合算法;AFLS通过在线监视融合数据新息是否为零均值白噪音,然后根据模糊规则调整融合滤波器的指数加权值,从而保证了滤波器的最优估计性能;仿真结果证明该方法在高噪声环境中具有良好的信息融合能力,能有效跟踪研究对象的状态变化。 相似文献
15.
相关滤波算法因其优越的高效性和鲁棒性被广泛应用于目标跟踪领域,但是该算法无法很好地处理目标遮挡和尺度变化等问题。针对该现象,提出了一种融合相关粒子滤波目标跟踪算法,该算法采用多个相关滤波器,学习到更多目标信息和背景信息,提高了目标与背景辨识度,并且引进了粒子滤波随机采样策略,在目标离开遮挡物时能够快速捕捉到目标。在尺度估计中引入了多尺度因子,对定位到的目标进行多尺度缩放,选用与滤波器响应值最大区域对应的尺度因子作为缩放比例,从而对目标进行尺度更新;粒子滤波算法随着粒子数目的增加,其计算量也随着增加,针对该问题,提出了基于粒子繁衍的重采样算法,在跟踪效率上做了提升。对提出的算法进行了三部分对比实验,实验结果验证了提出算法在处理目标遮挡和尺度变化问题上的有效性。 相似文献
16.
ZHAO Wei 《数字社区&智能家居》2008,(24)
在网络异常检测中,为了提高对异常状态的检测率,降低对正常状态的误判率,该文提出利用TSK模糊控制系统进行网络异常检测的新方法。在对TSK模糊控制系统的训练中采取梯度下降算法,充分发挥梯度下降局部细致搜索优势。实验数据采用KDDCUP99数据集,实验结果表明,基于梯度下降的模糊控制系统提高了异常检测的准确性。 相似文献
17.
本文提出了一种优化模糊逻辑控制器的新方法.该方法的主要思想是自动地优化误差变化率的隶属度函数,因为这类录属度函数表征了速度的反馈.为此,首先定义了一族参数化的隶属度函数.然后,在系统的运行过程中利用Nelder-Mead单纯算法来优化这类隶属度函数.为了验证所提方法的有效性,报告了控制一非线性被控对象的阶跃与跟踪响应. 相似文献