首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
针对蚁群算法收敛速度较慢,易陷入局部最优等问题,提出一种基于协同过滤策略的异构双种群蚁群算法。针对两个异构种群,引入协同过滤策略,奖励两个种群中蚂蚁更加偏好的路径,使算法更具导向性,加快算法的收敛速度;根据种群之间信息的动态反馈,自适应调整两个种群的交流频率,增加算法多样性;算法停滞时,两个种群协同交互,均化每个种群信息素,跳出局部最优。最后,引入神经网络失活思想,采用城市范围失活的方法,使程序运行时间更短。在对中大规模商旅问题(TSP)测试集仿真实验上,该算法提高了解的质量,保证了算法的多样性,加快了算法的收敛速度。  相似文献   

2.
针对蚁群算法易陷入局部最优与收敛速度较慢的不足,提出了动态学习机制的双种群蚁群算法。该算法重点引入奖惩模型,奖励算子提高算法的收敛速度,惩罚算子增加种群的多样性。由SA-MMAS(adaptive simulated annealing ant colony algorithm based on max-min ant system)和MMAS(max-min ant system)两个种群合作搜索路径,蚁群间根据不同城市规模动态地进行信息素交流,在种群交流后利用奖惩模型对双种群间的学习合作行为给予动态的反馈,从而平衡算法的多样性与收敛速度。通过17个经典旅行商问题(traveling salesman problem,TSP)实例进行验证,结果表明该算法能以较少的迭代次数取得最优解或接近最优解。对于中大规模的TSP问题效果更好,从而验证了算法的高效性和可行性。  相似文献   

3.
提出一种基于异类蚁群的双种群蚁群(Dual Population Ant Colony Algorithm Based on Heterogeneous Ant Colonies,DPACBH)算法,算法将两种信息素更新机制不同的蚁群分别独立进行进化求解,并定期交换优良解和信息来改善解的多样性,增强跳出局部最优的能力,使算法更容易收敛到全局最优解。以TSP(Travel Salesman Problem)问题为例所进行的计算表明,该算法比基本双种群蚁群算法具有更好的收敛速度和准确性。  相似文献   

4.
基本蚁群算法容易陷于局部最优解是其较为突出的缺点。针对这一问题,文章提出使用双种群蚁群同时进行搜索。在迭代过程中,若判断出算法陷入可能局部最优时,则交换不同种群对应路径上的信息素,并且同时双向动态自适应调整信息素挥发系数的改进策略。通过信息素的震荡变化和挥发系数的自适应调整,扩大搜索空间,提高算法搜索的全局性。通过实验仿真,证明了此算法改进是可行和有效的。  相似文献   

5.
针对基本双种群蚁群算法在进化中容易出现早熟、停滞的现象,对算法进行了改进.在双种群蚁群分别独立进化、定期进行信息交换的基础上,提出一种新的蚁群优化算法,通过建立信息素扩散模型,并在每种蚁群的局部信息素更新上采用扩散模型,使蚂蚁更好的发挥了协作能力.以旅行商(Travel Salesman Problem,TSP)问题为例的仿真实验表明,该算法比基本双种群蚁群算法具有更好的收敛速度和寻优能力.  相似文献   

6.
基本蚁群优化(Basic Ant Colony Optimization,BACO)算法在进化中容易出现停滞,其根源是蚁群算法中信息的正反馈.在大量蚂蚁选择相同路径后,该路径上的信息素浓度远高于其他路径,算法很难再搜索到邻域空间中的其他优良解.对此,提出一种双种群改进蚁群(Dual Population Ant Colony Optimization,DPACO)算法.借鉴遗传算法中个体多样性特点,将蚁群算法中的蚂蚁分成两个群体分别独立进行进化,并定期进行信息交换.这一方法缓解了因信息素浓度失衡而造成的局部收敛,有效改进算法的搜索性能,实验结果表明该算法有效可行.  相似文献   

7.
针对蚁群优算法在进化中容易出现早熟和停滞的现象,对基本蚁群算法进行了改进。借鉴生物群体的相互协作机理,将蚁群算法中的蚂蚁分成两个群体分别独立进行进化,并定期进行信息交换。同时,将遗传算法中排序的概念扩展到精英机制当中,形成基于优化排序的精英蚁群系统。两方法相结合,有效缓解了因信息素浓度失衡而造成的局部收敛,改进算法的搜索性能,计算结果也表明该算法有效性和可行性。  相似文献   

8.
针对粒子群算法(PSO)种群多样性低和易于陷入局部最优等问题,提出一种粒子置换的双种群综合学习PSO算法(PP-CLPSO).根据PSO算法的收敛特性和Logistic映射的混沌思想,设计并行进化的PSO种群和混沌化种群,结合粒子编号机制,形成双种群系统中粒子的同号结构和同位结构,其中粒子的惯性权重根据适应度值自适应调...  相似文献   

9.
阳名钢  陈梦烦  杨双远  张德富 《软件学报》2021,32(12):3684-3697
二维带形装箱问题是一个经典的NP-hard的组合优化问题,该问题在实际的生活和工业生产中有着广泛的应用.研究该问题,对企业节约成本、节约资源以及提高生产效率有着重要的意义.提出了一个强化学习求解算法.新颖地使用强化学习为启发式算法提供一个初始的装箱序列,有效地改善启发式冷启动的问题.该强化学习模型能进行自我驱动学习,仅使用启发式计算的解决方案的目标值作为奖励信号来优化网络,使网络能学习到更好的装箱序列.使用简化版的指针网络来解码输出装箱序列,该模型由嵌入层、解码器和注意力机制组成.使用Actor-Critic算法对模型进行训练,提高了模型的效率.在714个标准问题实例和随机生成的400个问题实例上测试提出的算法,实验结果显示:提出的算法能有效地改善启发式冷启动的问题,性能超过当前最优秀的启发式求解算法.  相似文献   

10.
为了解决传统蚁群算法求解TSP问题的求解时间较长、易于局部收敛的问题,提出了一种基于变异和启发式选择的蚁群优化算法。利用较优路径中城市相互之间的邻接特点,避免了大范围搜索求解,使得能具有较好的初始解,将算法的时间复杂度大大降低;同时为了加快算法的收敛速度,对于路径的启发式选择进行重新定义;引入变异机制,充分利用2-交换法简洁高效的特点,既提高了变异效率,也改进了变异质量。实验结果证明,在一些经典TSP问题上新算法表现出很好的性能。  相似文献   

11.
提出一种基于启发式变异的蚁群算法,结合传统蚁群算法和遗传变异算法的优点,利用蚁群算法找到一条全局近优解,采用启发式变异进行路径优化,并将优化信息以信息素的方式传递给下一代,从而快速得到全局最优解。以旅行商问题为例进行仿真实验,结果表明该算法比其他同类算法具有更好的性能。  相似文献   

12.
一种使用视觉反馈与行为记忆的蚁群优化算法   总被引:1,自引:0,他引:1  
郭禾  程童  陈鑫  王宇新 《软件学报》2011,22(9):1994-2005
在分析现有改进算法的基础上,结合视知觉及认知心理学的相关理论,提出一种具备视觉反馈与行为记忆学习能力的新型蚁群算法:首先,建立视觉模型使得蚂蚁能够通过人工视觉感知周围目标城市的分布,用视知觉修正信息素噪声,提高蚂蚁探索质量;其次,建立行为记忆学习模型,使蚂蚁能够从已经走过的局部最优路径中提取经验来指导周游活动,加快算法收敛速度并强化寻优能力.经过与传统改进策略比较发现,新算法在求解质量与求解时间上均有明显改进.  相似文献   

13.
小窗口蚁群算法   总被引:8,自引:0,他引:8  
萧蕴诗  李炳宇 《计算机工程》2003,29(20):143-145
在蚁群算法的基础上,提出了小窗口蚁群算法。通过对旅行商问题解集的分析,找到其最优解的特点,通过限定蚂蚁每次只向距离最近的几个城市移动,大大缩小其搜索范围,减少对算法中主要参数的依赖,提高其搜索精度并减少搜索时间。实验结果表明该算法有较好的效果。  相似文献   

14.
激励学习已被证明是在控制领域中一种可行的新方法。相比其他的方法,它能较好地处理未知环境问题,但它仍然不是一种有效的方法。幸运的是,在现实世界中,智能体总是会有一些环境的先验知识,这些能形成启发式信息。启发式搜索是一种常用的搜索方法,有很快的搜索速度,但需要精确的启发式信息,这在有些时候难以得到。文中分析比较了启发式搜索和激励学习的各自特点,提出一类新的基于启发式搜索的激励学习算法,初步的实验结果显示了较好的性能。  相似文献   

15.
自适应蚁群算法   总被引:114,自引:1,他引:114  
蚁群算法是由鄣大利得M.Dorigo等人首先提出的一种新型的模拟进化算法,初步的研究已经表明该算法具有许多优良的性质,为求解算杂的组合优化问题提供了一种新思路,此方法已经引起了众多学者的研究兴趣,但同时也存在着一些缺点,如需要较长的计算时间,容易出现停滞现象等,目前国内对此研究尚少,为此,本文对景中算法的研究现状作一综述,希望能够对相关研究起到一定的启发作用。  相似文献   

16.
蚁群算法在K-TSP问题中的应用   总被引:7,自引:0,他引:7  
黄席樾  胡小兵 《计算机仿真》2004,21(12):162-164
针对K-TSP(K—person Traveling Salesman Problem)问题,该文提出了一种利用蚁群算法求解该问题的新思路。该算法采用k只蚂蚁共同构造问题的一个解,并通过多组(每组k只)蚂蚁相互协作最终达到搜索最优解的目的。实验结果显示,该算法行之有效,是一种求解K-TSP问题的有效算法。  相似文献   

17.
朱艳  游晓明  刘升 《信息与控制》2019,48(3):265-271
针对蚁群算法在求解最短路径问题时收敛速度慢,容易陷入局部最优解的问题,提出基于启发式机制的改进蚁群算法.在蚁群系统(ant colony system,ACS)算法基础上通过候选节点到目标点的距离动态调整启发函数,提高收敛速度;算法陷入局部最优时,引入惩罚函数,使当前最优路径上的信息素快速下降而降低蚂蚁下一次搜索正反馈的影响,避免算法陷入局部最优.仿真实验表明,在复杂环境中,包括终点处存在凹形障碍物时,该算法在解的质量和收敛速度上都显示出了良好的性能.  相似文献   

18.
启发式算法是求解组合优化问题求解的重要手段,其主要特征是能够以可接受的计算代价找到足够好的可行解.然而,设计良好的用于求解组合优化问题的启发式算法需要大量的专业领域知识以及大量的试错工作,且人工设计的启发式算法不能够保证在不同问题集上均具有一致性表现.另一方面,深度学习方法能够通过学习自动设计启发式规则,然而深度学习方法通常缺少在解空间内搜索的能力.为克服以上问题,提出了一种基于蚁群优化和深度强化学习的混合启发式算法框架.在该框架中,蚁群算法能够利用深度强化学习提取的启发式信息,而深度强化学习方法的解空间搜索性能也由于蚁群算法的加入而获得提高.采用经典的TSPLIB中的算例对该算法求解旅行商问题的效能进行了计算验证,结果表明采用深度学习方法能够极大地提升蚁群算法的计算表现,并降低其计算代价.  相似文献   

19.
基于蚁群算法的中国旅行商问题满意解   总被引:14,自引:0,他引:14  
蚁群算法是基于群体合作的一类仿生算法,适合于解困难的离散组合优化问题。本文对其做了适当的改进,以克服其求解速度过慢、容易出现停滞的缺陷,并将其用于解决中国旅行商问题。找到了目前巳知的最好的解,同时指出了进一步提高蚁群算法效率还需解决的问题和方向。  相似文献   

20.
为了克服现有的WSN节点故障诊断方法所具有的难以实现在线诊断和诊断精度仍然不够高的缺点,设计了一种基于Sarsa算法和改进蚁群算法的WSN节点在线故障诊断方法;首先,建立了监测区域的网络模型和WSN节点故障诊断模型,然后,采用主成分分析法对节点故障样本数据进行降维,从而提高诊断效率,将样本数据作为层次,将故障诊断类作为各层节点建立层次树,采用改进的Sarsa算法求取各层节点的Q值,并将其用于初始化蚁群算法中路径的信息素,最后,提出了一种改进的蚁群算法求取从第一层出发的蚁群到各层节点之间的路径,将各层中信息素最大的节点作为最终的故障诊断类别;在Matlab环境下进行仿真实验,结果证明文中方法能有效实现WSN节点故障诊断,且与其它方法相比,具有故障诊断精确度高且能在线故障的优点,是一种有效的节点故障诊断方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号