首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本文采用相量图和数学方法分析提高10 kV长线路末端电压的配网串联电容器补偿装置(以下简称:配网串补装置或串补装置)。提出配网串补装置最佳安装点的概念。研究串补装置的安装点、容抗值范围及线路功率因数与串联电容器极间电压的关系。对比内熔丝、外熔丝、无熔丝电容器的特点,得出内熔丝电容器较适用于配网串补装置的结论。提出线路功率因数较低的情况下,可能存在人为抬高串联电容器额定电压的情况,此时串联电容器内熔丝动作下限电压宜由用户与生产厂家协商确定,以确保配网串补装置安全运行。  相似文献   

2.
为了更好地利用固定串联补偿电容器改善网架薄弱、供电半径大以及长线路末端有重负荷配电网的电压偏差,研究了确定固定串联补偿电容器选址定容的多目标优化方法。以电压整体偏差、串联补偿容抗和有功网络损耗最小为目标建立配电网固定串联补偿多目标优化模型。基于灵敏度方法和固定串联电容器减小线路电压损耗的原理确定安装固定串联电容器候选线路和补偿容抗取值范围。运用带精英策略的快速非支配排序遗传算法求解建立的模型。算例验证了方法的可行性和有效性。结果表明串联电容器能够有效地提高电压质量和降低有功网络损耗。  相似文献   

3.
以串联电容器补偿方式治理10kV长线路末端低电压有着良好前景,但相关技术问题需深入探析。首先依托相量图和数学方法对串补装置安装点和容抗值范围进行分析,明确相关原则;其次从线路功率因数与串联电容器极间电压的关系入手,结合各类电容器的特点,确定配网串补装置的适宜结构和电容器选型;最后对关系串补装置运行安全性的内熔丝动作下限电压进行探讨,明晰在线路功率因数低下时该值的确立途径。  相似文献   

4.
长距离架空输电线路存在线路感抗随着线路长度的增加而增大的问题。采用在融冰线路中串联补偿电容器的方法来抵消融冰线路的感抗,以降低融冰线路的总阻抗,保证电容补偿无功电源融冰方法应用于长线路融冰,系统能够提供有效的融冰电流。针对电容补偿无功电源融冰方法存在的电容器端电压升高问题,提出提高电容器对地绝缘水平的方法和采用电容器多组串联分压的方式,用来解决在融冰过程中电容器过电压导致现有10 kV电容器额定电压无法满足融冰操作要求的问题。通过低电压模拟电路仿真实验,绘制出线路阻抗电压与末端电容器电压随着线路长度变化的向量关系图,并给出利用10 kV电源和10 kV电容器对220 kV输电线路LGJ400导线融冰的参数计算和具体实施融冰的方案。  相似文献   

5.
熊实宪  梁晓 《江西电力》1994,18(4):7-10
35KV输电线路串联补偿的调压效果和线路谐振及其工业试验江本省电力工业局(330006)熊实宪江西镇江楼电厂(332000)梁晓1972年九江地区35KV九武线安装了全省唯一的一套串联电容补偿装置(以下简称“串补”),它对于提升长输电线路的末端电压、...  相似文献   

6.
特高压交流输电线路串联补偿合闸操作过电压研究   总被引:5,自引:2,他引:3  
采用串联补偿能够有效地提高特高压交流输电线路的输电能力和系统的稳定性,但同时也会影响输电线路的电压特性。以中国特高压交流示范工程为背景,采用电磁暂态计算程序ATP-EMTP,对含有串联补偿装置的特高压交流输电线路的合闸操作过电压进行了计算分析。计算结果表明:加装串联补偿电容器可以降低操作过电压;串联补偿电容器的位置越靠近线路首端限压效果越好,其补偿度越大限压效果越好;采用相应的限压措施,可以将空载线路合闸过电压和单相重合闸过电压分别限制在1.34 p.u.和1.36 p.u.。  相似文献   

7.
降低线路损耗的最佳线路无功补偿   总被引:2,自引:0,他引:2  
匡立民 《安徽电力》2001,18(1):26-29,54
本文通过对配电线路的分析和数学求算,从而得出在配电线路上加装电容器的最佳补偿度、最佳安装地点、降低线损百分数与安装组数间的关系;求算出当实际补偿度与最佳补偿度不同时,其最佳安装地点、降低线损百分数与安装组数间的关系;介绍了以恒定无功负荷替代变化着的无功负荷的处理方法;以及在不同补偿方式时,补偿容量,安装地点以及效益的求算。  相似文献   

8.
在详细分析了10 kV配电线路串联电容器补偿和并联电容器补偿的工作原理、主要组成及其优缺点后,针对它们的优缺点,提出了一种10 kV混合串并联电容器补偿装置,阐述了该装置的主要组成和串并联电容器的容量计算规则。最后介绍了一个采用混合串并联电容器补偿技术的工程实例。  相似文献   

9.
对于设计高压串联补偿电容器组的保护装置中金属氧化物非线性电阻的应用,可使保护水平得到明显的改善。用这种保护方案,在线路故障期间不会完全失去串联电容补偿装置。可以预料,金属氧化物技术用作保护输电线路串联电容器免受过电压的保护装置,对今后设计串补装置的保护系统将起有利的作用。1951年美国首先应用串联电容器。从那时以来,装置的高压和超高压串补装置容量已经增加到1600多万千乏,安装在大约86个串补站内。  相似文献   

10.
串联补偿技术在我国的应用   总被引:8,自引:2,他引:6  
回前言高压输电线路上采用串联电容补偿能够降低输电系统的电抗,缩短送受端之间的电气距离,提高线路的输电能力和输电系统的稳定性。在保证输电能力和输电系统的稳定性不降低的条件下,可以减少所需要的输电线路回路数量,降低输电工程投资。因此,世界上现有的大容量远距离输电系统中都广泛采用串联电容补偿,提高线路的输电能力和输电系统的稳定性。据不完全统计,自1950年以来全世界目前已投入运行的高压串联补偿装置约有2O0套,串联补偿电容器总容量约80O00Mvar,电压等级包括220一助OkV。我国自1954年起在6-35kV线路上使用串联补…  相似文献   

11.
基于小波变换的行波故障定位法在串补输电线路中的应用   总被引:13,自引:7,他引:6  
串联电容补偿线路的故障测距和继电保护是一个比较困难的问题.困难之处不在于串补电容本身,而在于与之并联的MOV的动作特性.由于串补电容和MOV一起组成了一个非线性电路,故难以建立其在故障发生时的精确模型.作者将基于连续小波变换的行波定位法应用于串补输电线故障测距,分析了MOV对行波定位法的影响,并进行了大量的仿真.该方法不依赖串补装置的模型,不受MOV非线性特性的影响,具有较高的定位精度,且不受故障类型与接地阻抗的影响.EMTP仿真结果证实了该方法的有效性.  相似文献   

12.
从理论上分析了多串补线路故障后的电气量特征,随着故障点的变化,线路多处会发生电流反相和电压反相,故障后电气量中存在多个低频暂态分量。研究了线路保护(电流差动保护和距离保护)的动作性能,提出了串补线路保护配置方案,并给出2点改进建议:一是采用保持记忆电压作为距离保护的极化电压,防止电压反相造成距离保护误动作;二是通过比较故障电流和记忆电压的相位来识别电流反相,当故障后电流相位超前记忆电压,判断为电流反相,闭锁电流差动保护。利用RTDS系统搭建了1 000 kV输电线路模型并进行了仿真验证,仿真结果与理论分析一致。  相似文献   

13.
串联电容补偿线路的相差保护特性研究   总被引:2,自引:1,他引:1  
温荣  谭建成 《电网技术》2007,31(13):86-90
高压输电线路上靠近串补电容处发生故障时,由于电容的补偿作用,线路两端电流、电压的相位差可能达到180°,远远超出了传统相差保护的整定值,导致保护无法判别故障。为此,作者提出一种改进算法,对故障时的暂态电流信号进行小波变换,获取暂态相位差值作为保护动作的依据,并考虑了金属氧化物变阻器不能导通时串补电容对保护性能的影响。仿真结果表明,改进算法能快速准确地判断故障区域,弥补了传统保护的缺陷,且不受串补电容补偿度、安装地点的影响,对普通线路同样适用。  相似文献   

14.
Transmission of electric power over great distances imposes very severe economical and technical limitations. Series compensation techniques are found to be very effective in overcoming such economical and technical limitations, especially transmission line compensation using series capacitors, which has gained special interest among researchers because of its cost effectiveness. This work provides two series compensation algorithms for a student and presents a user-friendly software package developed in Visual Basic for the study of transmission line series compensation.  相似文献   

15.
具有可控串联补偿的新型故障限流器的研究   总被引:5,自引:3,他引:2  
提出一种新型的具有动态串联补偿功能的故障电流限流器,由一个固定电容器、开关控制的电容器组与旁路电感并联后再和限流电感串联而成,较以往限流器的优势在于串联补偿功能上的改进.正常时,通过投切不同的电容器组,按步长的方式来控制调整线路的补偿度;故障时,则通过和旁路电感相串联的可关断晶闸管(GTO)来控制其限流程度.在详细分析其工作原理的基础上,用MATLAB程序进行了数字仿真,结果表明,此装置性能良好,可作为电力系统中一种有效的保护设备.  相似文献   

16.
一起串联补偿电容器复杂故障的分析   总被引:2,自引:0,他引:2  
结合某500 kV线路的串联补偿(简称串补)电容器发生的一起多重转换性故障,分析了故障时线路保护和串补保护的动作行为,结果与动作报告及录波数据相符,分析表明故障时火花间隙动作出现异常.通过分析火花间隙的动作原理可知,电容器在短时间内大面积损坏是火花间隙未触发的主要原因.分析了电容器组的接线方式及耐爆容量,表明两并或三并...  相似文献   

17.
Series capacitor compensation has been found to considerably increase the power carrying capacity of AC long power transmission systems. This paper presents a mathematical model and an analytical procedure for finding the economical degree of series capacitor compensation. Two analytical approaches are described: the first is based on minimizing the energy transmission cost of 1 kWh to be transmitted over the compensated line, and the second is based on maximizing an objective function defined by the difference between the equivalent cost of the increase in the operating level of the power transmitted over the line and other costs associated with the line including the costs of series capacitors and extra power losses due to the higher current carried over the compensated line. Results of the application of the proposed procedure to a sample 500 kV transmission line are provided. The effects of different electrical parameters on the optimal (economical) compensation conditions are also considered.  相似文献   

18.
电力系统配电网中一般有较多的波动性或冲击性电动机负载,造成电压偏低、波动严重,严重影响电能质量和电机的运行性能。针对这一问题,提出采用串联电容就近对电动机进行补偿的方法,计及电机的负载特性,通过对比计算确定了在配电变压器高压侧进行串补对机端电压调节的效果最好。仿真计算了波动性负荷情况下串补装置不同补偿方式对电机机端电压调节性能的影响。结果表明:采用低度过补偿方式,可以在避免自激的情况下,在较大的范围内提升线路末端电机的电压性能,消除由于波动性负荷引起的电压波动,为配电网中改善电动机的运行性能和机端电压质量提供了一条新的思路。  相似文献   

19.
串联电容器极间介质设计场强选择   总被引:1,自引:0,他引:1  
分析了串联电容器在各种工况下可能出现的过电压水平,并以此确定了串联电容补偿装置过电压保护器的保护水平电压Upl。以高压全膜并联电容器的极间介质设计场强为基准,得到了串联电容器在线路不同事故负荷电流和保护水平Upl时的宜用介质工作场强。建议带有串联电容补偿装置的线路按(N-1)方式运行时,其事故负荷电流不要超过1.4pu,以免串联电容器极间介质工作场强过低,导致串补装置设计成本过高。  相似文献   

20.
随着国家电网对农网改造力度的加大,越来越多的农网开始加装并联电容器,用于提高功率因数,降低线损.由于农网负荷较特殊,无功补偿容量不大,招标中经常要求采用10 kV框架式电容器,电容器组分档补偿,串联电抗器不分档的补偿模式.采用该补偿模式后,可以简化一次接线复杂程度,降低设备造价,但是带来了电抗率不匹配和谐波放大的问题....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号