首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the presence of estrogen receptors (ER) in vascular mast cells and a possible genomic effect of estrogens on the expression of mast cell (MC) mediators such as chymase, TNFα, NOS and IL-10, which are known to affect the course of atherosclerosis. Immunocytochemical detection of mast cell tryptase and the co-localization of ERs in MCs from abdominal aortic vessels from 10 fertile woman, 10 postmenopausal women and 15 men was performed. The genomic expression of IL-10, TNFα, and NOS was analyzed by RT-PCR and chymase activity by spectrophotometry after 24 h incubation with 17-β estradiol (0.2-0.5 ng/mL) in rat purified peritoneal MCs.
A similar number of MCs were found in both intima and adventitia layers from men, and fertile and postmenopausal women, while ERs were detected only in the arterial walls from fertile women. The mRNA expressions of IL-10 and TNFα, as well as chymase activity, were not affected. A moderate increment of NO and both NOS, and a reduction in TNFα cytotoxicity was observed after incubating peritoneal MCs with 17- β estradiol at a concentration of 0.5 ng/mL. Taken together, these results indicate that vascular MCs express ERs. The data demonstrate that estrogens can directly modify vascular MC activity. This is a novel mechanism of synergistic cooperation for the protective role of estrogens in the genesis of atherosclerosis.  相似文献   

2.
Acute kidney injury (AKI), commonly occurring as complications of sepsis, cardiac surgery, and liver or kidney transplantation, is a critical care syndrome. It is well known that lipopolysaccharide (LPS) shock is a common triggering factor for AKI. This study is aimed to examine the effect of flavonoid compound hispidulin on LPS-induced AKI. For this, renal tubular epithelial cell HK-2 was treated with LPS to establish an in vitro model of AKI. The effect of hispidulin on HK-2 cell viability was examined using CCK-8 assay. Cell apoptosis was determined by TUNEL and flow cytometry. Apoptosis marker proteins were determined by using western blot. The levels of pro-inflammatory cytokines were determined by ELISA assay and qRT-PCR. The translocation of NF-κB was determined by western blot. The effect of MyD88 on the cytoprotective activities of hispidulin was examined by overexpressing MyD88 in HK-2 cells. Our results showed that hispidulin was not able to produce a cytotoxic effect on HK-2 cells at tested concentrations. However, hispidulin could protect HK-2 cells from LPS-induced cell injury. Our results also showed that hispidulin was able to attenuate LPS-induced HK-2 cell apoptosis. In addition, LPS led to an inflammatory response in HK-2 cells, evidenced by NF-κB p65 activation as well as increased expression and release of inflammatory cytokine IL-6 and TNF- α, which could be reversed by pretreatment with hispidulin. Overexpression MyD88 was found to significantly dampen the cytoprotective activities of hispidulin against LPS insult. More importantly, MyD88 was identified as a direct target of hsa-miR-203, and hispidulin was found to regulate the expression of MyD88 via upregulating hsa-miR-203. Our results showed that hispidulin attenuates LPS-induced HK-2 damage via regulating hsa-miR-203/MyD88 axis.  相似文献   

3.
Mast cells and angiogenesis   总被引:12,自引:0,他引:12  
There is much evidence that angiogenesis is related to mast cells. Mast cells accumulate in many angiogenesis-dependent situations, including tumor growth, rheumatoid arthritis, ovulation, would healing, and tissue repair. Several mast cell mediators are angiogenic and regulate endothelial cell proliferation and function. Stem cell factor, vascular endothelial growth factor, epidermal growth factor, basic fibroblast growth factor, and platelet-derived growth factor induce chemotactic migration of mast cells to sites of neovascularization. Mast cell products such as tryptase also degrade connective tissue matrix to provide space for neovascular sprouts. Angiogenesis has been proposed as a target for anticancer therapy and for treatment of inflammatory disorders such as rheumatoid arthritis. Future studies on the cascade of angiogenic events, including mast cell-target cell interaction, and various intracellular signaling pathways are indicated to provide a new approach for the treatment of cancer and inflammatory disorders and for tissue repair.  相似文献   

4.
The effect of nerve growth factor (NGF) on ontogenesis of frog mast cells was investigated in vivo by histochemical, morphometric, and ultrastructural analysis. Three groups of tadpoles at various stages of development were used. In the first group, the larvae received i.p. injections of 1 ng NGF/g; the second group received 10 ng NGF/g, while the control group received only the vehicle. The first recognizable mast cells arose symmetrically in the tongue at stage 26 of Witschi's standard table. At stages 26 and 29, the mast cell number in the NGF-injected tadpoles was significantly higher than the control group. From stage 29 onward, the mast cell number rapidly increased in all groups. No significant differences in mast cell number were observed between the control group and the NGF-injected groups at stages 31 and 33. Electron microscopy revealed that at metamorphic climax (stage 33), the mast cells in the NGF-treated groups were more mature than those in the control group. Therefore, nerve growth factor at early stages of tadpole development is likely to induce differentiation of mast cell precursors, while at later stages it is likely to induce maturation of immature mast cells. The close anatomical association between mast cells and perineurium, observed during nerve development, is intriguing. Already in the early stages of nerve development, the mast cells form a network around Schwann cell-axon complexes, together with the perineurial cells. At climax, the mast cells are located between the perineurial layers, suggesting that they may play a role in the tissue-nerve barrier of the perineurium. Nerve growth factor also seems to induce perineurial cell maturation.  相似文献   

5.
Ultrastructural aspects of citrus canker development were investigated in nonwounded leaves of citrus species by transmission electron microscopy (TEM). A susceptible species Mexican lime and a resistant species Yuzu were spray-inoculated with a virulent strain of Xanthomonas citri pv. citri. Initial symptoms occurred on Mexican lime ∼9 days after inoculation, whereas they appeared on Yuzu mostly 11 days after inoculation. In Mexican lime leaves, the bacterial invasion was usually accompanied by host cell wall dissolution and cellular disruption. Fibrillar materials from degenerated cell walls were usually found in intercellular spaces. Damaged host cells with necrotic cytoplasm showed the localized separation of plasma membrane from the cell wall. Bacterial multiplication and electron-transparent capsule-like structures around bacteria were commonly observed. Meanwhile, cell wall protuberances were prominent outside host cell walls in response to bacterial invasion in Yuzu leaves. Occlusion of intercellular spaces was also formed by the fusion of two or more individual cell wall protuberances originated from two adjacent host cells. Papillae-like materials accumulated locally within host cells in close proximity to bacteria. Some bacteria were found to be undergoing degeneration in xylem vessels. Also, the shrunken, inactive bacteria were surrounded by electron-translucent fibrillar materials in intercellular spaces, implying bacterial immobilization. These cellular responses are thought to be the consequences of defense responses of Yuzu leaves to invading bacteria. In both citrus species, X. citri pv. citri contained polyphosphate bodies showing electron-dense and elliptical structures in cytoplasm. Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc.  相似文献   

6.
Puberty is characterized by psychosomatic alterations, whereas chronic ethanol consumption is associated with morphophysiological changes in the male reproductive system. The purpose of this study was to show the toxic effects on testis and epididymal morphophysiology after ethanol administration during peripuberty. To this end, male Wistar rats were divided into two groups: ethanol (E) group: received a 2 g dose of ethanol/kg in 25% (v/v); and control (C) group: received the same volume of filtered water; both were treated by gavage for 54 days. On the 55th day of the experiment, epididymis, and testis were collected for sperm count, histopathology, mast cell count, and morphometry. The vas deferens was collected for sperm motility analysis. The femur and testicle were used for cytogenetic analysis. Ethanol exposure caused reduction in daily sperm production (DSP) and in sperm motility, multinucleated cells or those having no chromosomal content, and late chromosome migrations. No changes were observed in the number of chromosomes in the mitotic analysis. However, some alterations could be seen in meiocytes at different stages of cell division. Stereological analysis of the epididymis indicated reorganization of its component in the 2A and 5A/B regions. The epididymal cauda had greater recruitment, and both degranulated and full mast cells showed an increase in the initial segment, in the ethanol group. In conclusion, ethanol administration during the pubertal phase affects epididymis and testis in adult rats, as indicated mainly by our new findings related to mast cell number and meiotic impact. Microsc. Res. Tech. 79:541–549, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
SHELDON R. GORDON 《Biocell》2022,46(9):2059-2063
Much of our understanding of the events which underlie cell migration has been derived from studies of cells in tissue culture. One of the components that mediates this process is the dynamic actin-based microfilament system that can reorganize itself into so-called stress fibers that are considered essential components for cell motility. In contrast, relatively few studies have investigated cell movement along an extracellular matrix (ECM) which is known to influence both cellular organization and behavior. This opinion/viewpoint article briefly reviews cell migration during corneal endothelial wound repair along the tissue’s natural basement membrane, Descemet’s membrane. Because the tissue exists as a cell monolayer it affords one an opportunity to readily explore the effect of cell/matrix influences on cell motility. As such, cell movement along this substrate differs somewhat from that found in vitro and migrating endothelial cells also demonstrate an ability to move along the ECM without the benefit of having an organized actin cytoskeleton.  相似文献   

8.
The endodermal cells of the human yolk sac (YS) produce non‐nucleated erythrocytes (NNEs) and numerous serum proteins that are transiently storage within the YS cavity. After their transfer via the vitelline duct to the embryo gastrointestinal lumen, the nutrients’ final fate is unknown. With the aim of investigate how erythroid cells and nutrients are conveyed to embryo circulation, we studied, using a morphological and immunohistochemical approach, the embryo anatomy and the serum protein α‐fetoprotein (AFP) presence, in 15 human embryos and their YS, collected from tubal pregnancies from 4 to 8 wpf. We observed at 5 wpf, a strong AFP staining in the endodermal cells of the YS, thereafter AFP was only present in the YS cavity and the gastrointestinal lumen. During 7 wpf, AFP expression declined and disappeared, concomitant with YS regression. Between 5 and 7 wpf, NNEs were observed in the gastrointestinal cavity, where they accumulate in the stomach. Here, the cells were attached to the endodermal epithelial cells or were free in the lumen. By scanning electron microscopy, we identified signs of NNEs phagocytized by endodermal cells. Those NNEs free in the lumen, after hemolysis, were probably removed by endocytosis (cell debris). Taking all together, we postulate that after reaching the endodermal epithelial cells of the stomach, nutrients are transferred to the embryo by a phagocytic/endocytic mechanism that is operative until the end of 6 wpf. After absorption, NNEs are probably degraded within phagosomes, nutrients delivered to the cell cytoplasm and then transported towards the embryonic circulation. Microsc. Res. Tech. 78:500–507, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The ultrastructural distribution and quantification of calcium in mast cells prepared by anhydrous processing was investigated by energy-filtering transmission electron microscopy (EFTEM) using a Zeiss 902 electron microscope. Optimal conditions for calcium detection were determined using inorganic (calcium phosphate) and organic (calcium-loaded chelex beads) standards with known amounts of calcium. Electron energy-loss spectroscopy (EELS) revealed calcium at the L2,3 edge and also at the M2,3 edge for all specimens examined. Comparison with X-ray microanalysis confirmed the results obtained with EELS. Electron spectroscopic imaging (ESI) was applied for mapping calcium both in standards and in cells and we showed that mast cell granules were the main site of calcium localization. Although, results have shown that a combination of analytical techniques is required to obtain reliable results.  相似文献   

10.
Quantitative analysis of mast cell structure   总被引:7,自引:0,他引:7  
Fixed and embedded normal rat peritoneal mast cells were studied by light and electron microscopy, utilizing stereological methods to obtain quantitative data on their structure. The diameters of the mast cells and their nuclei averaged 10.9 and 5.8 μm respectively. The volume of the individual mast cell granule was estimated to 0.3 μm3. About 53% of the cytoplasmic volume was occupied by granules, and 2% by mitochondria. 11% of the cell volume was taken up by the nucleus. The average number of granules per cell was calculated to about 1020. Quantitative biochemical data on mast cells, extrapolated from the literature and applied to the calculated figures above, yield the following results with respect to mast granule contents-heparin: 95 × 10?3 pg, histamine: 30 × 10?3 pg and 5-hydroxytryptamine: 1.3 × 10?3 pg per mast cell granule.  相似文献   

11.
The defense reactions against biological (Histoplasma capsulatum and Escherichia coli) and non-biological materials (China ink and nylon thread) were tested in vivo in third instar larvae of Dermatobia hominis. The cellular defense performed by larval hemocytes was observed under electron microscopy. China ink particles were phagocytosed by granular cells 5 h after injection. E. coli cells were internalized by granular cells as early as 5 min after injection and totally cleared 180 min post-injection, when many hemocytes appeared disintegrated and others in process of recovering. H. capsulatum yeasts provoked, 24 h after being injected, the beginning of nodule formation. Nylon thread was encapsulated 24 h after the introduction into the hemocoel. Our results suggest that granular cells were the phagocytic cells and also the responsible for the triggering of nodule and capsule formation. In the presence of yeasts cells and nylon thread, they released their granules that chemotactically attracted the plasmatocytes that on their turn, flattened to surround and isolate the foreign material.  相似文献   

12.
Blue molybdenum oxides (molybdenum blues) have been prepared from aqueous phosphomolybdic acid solutions and applied to thin and semi-thin sections of glutaraldehyde-fixed, epoxy-embedded tissues. A light blue colour and high electron opacity were found in mast cell granules, the secretion content of goblet cells, and cytoplasmic granules in Drosophila salivary glands. The possibility that binding of blue molybdenum oxides to polyhydroxylic components accounts for the staining and contrasting reactions in some cell structures is briefly discussed.  相似文献   

13.
Progenitor cells play an important biological role in tooth and bone formation, and previous analyses during bone and dentine induction have indicated that they may be a good alternative for tissue engineering. Thus, to clarify the influence of the microenvironment on protein and gene expression, MDPC23 cells (mouse dental papilla cell line) and KUSA/A1 cells (bone marrow stromal cell line) were used, both in vitro cell culture and in intra-abdominal diffusion chambers implanted in 4-week-old male immunodefficient mice (SCID mice). Our results indicate that KUSA/A1 cells differentiated into osteoblast-like cells and induced bone tissue inside the chamber, whereas, MDPC-23 showed odontoblast-like characteristics but with a low ability to induce dentin formation. This study shows that MDPC-23 cells are especial cells, which possess morphological and functional characteristics of odontoblast-like cells expressing dentin sialophosphoprotein in vivo. In contrast, dentin sialophosphoprotein gene and protein expression was not detected in both cell lines in vitro. The intra-abdominal diffusion chamber appears as an interesting experimental model for studying phenotypic expression of dental pulp cells in vivo.  相似文献   

14.
Insect glial cells serve functions for the formation, maintenance, and performance of the central nervous system in ways similar to their vertebrate counterparts. Characterization of physiological mechanisms that underlie the roles of glia in invertebrates is largely incomplete, partly due to the lack of markers that universally label all types of glia throughout all developmental stages in various species. Studies on primary cell cultures from brains of Locusta migratoria demonstrated that the absence of anti-HRP immunoreactivity, which has previously been used to identify glial cells in undissociated brains, can also serve as a reliable glial marker in vitro, but only in combination with a viability test. As cytoplasmic membranes of cultured cells are prone to degradation when they lose viability, only cells that are both anti-HRP immunonegative and viable should be regarded as glial cells, whereas the lack of anti-HRP immunoreactivity alone is not sufficient. Cell viability can be assessed by the pattern of nuclear staining with DAPI (4′,6-diamidino-2-phenylindole), a convenient, sensitive labeling method that can be used in combination with other immunocytochemical cellular markers. We determined the glia-to-neuron ratio in central brains of fourth nymphal stage of Locusta migratoria to be 1:2 both in situ and in dissociated primary cell cultures. Analysis of primary cell cultures revealed a progressive reduction of glial cells and indicated that dead cells detach from the substrate and vanish from the analysis. Such changes in the composition of cell cultures should be considered in future physiological studies on cell cultures from insect nervous systems. Microsc. Res. Tech. 2009. © 2008 Wiley-Liss, Inc.  相似文献   

15.
Digestive tubules of Strombidae are composed by three cell types: digestive cells, vacuolated cells, and crypt cells. The last one is characterized by the presence of intracellular granules identified as spherocrystals. Such structures are known to occur in basophilic cells of gastropod digestive gland, where they are supposed to be involved in the regulation of some minerals and in detoxification. In this study, energy‐dispersive X‐ray analysis (EDX) and energy filtered transmission electron microscopy (EFTEM) were used to determine the elemental content of spherocrystals in two Strombidae, Strombus gigas and Strombus pugilis. In freshly collected individuals of both species, the following elements were detected: Ca, Fe, Mg, P, and Zn. Aluminum and Mn were also detected in S. gigas. Their presence in spherocrystals indicates that, in Strombidae, spherocrystals are involved in the regulation of minerals and essential trace metals. In order to answer the question “are spherocrystals involved in nonessential trace metals scavenging?,” artificial cadmium and lead exposure by both waterborne and dietary pathways was applied to S. pugilis. No evidence of cadmium (Cd(NO3)2) or lead (Pb(NO3)2) provided by food was found in spherocrystals. Cadmium provided in water (Cd(NO3)2 and CdCl2) causes structural modifications of the digestive gland; however, this element was not trapped in spherocrystals. These results suggest that spherocrystals are not involved in detoxification of such nonessential trace metals. Microsc. Res. Tech., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
Autofocusing is essential to high throughput microscopy and live cell imaging and requires reliable focus measures. Phase objects such as separated single Chinese hamster ovary cells are almost invisible at the optical focus position in bright field microscopy images. Because of the phase effect, defocused images of phase objects have more contrast. In this paper, we show that widely used focus measures exhibit an untypical behaviour for such images. In the case of homogeneous cells, that is, when most cells tend to lie in the same focal plane, both gradient‐based and statistics‐based focus measures tend to have a local minimum instead of a global maximum at the optical focus position. On the other hand, if images show inhomogeneous cells, gradient‐based focus measures tend to yield typical focus curves, whereas statistics‐based focus measures deliver curves similar to the case of homogeneous cells. These results were interpreted using the equation describing the phase effect and patch‐wise analysis of the focus curves. Bioprocess engineering experts are also influenced by the phase effect. Forty‐four focus positions selected by them led to the conclusion that they prefer to look at defocused images instead of those at the optical focus.  相似文献   

17.
The first experimental studies concerning observations of changes in bone cell functional morphology were made using the SEM, and SEM has remained paramount in this field. Bone forming and resorbing cells only exist on surfaces – which are available for study after removal of adjacent tissue layers: The underlying matrix surface can then be studied after removal of the cells, and the mineral front examined after removing the matrix (with an appropriate solvent or by plasma ashing). In this review, we analyse the main findings which we have made in this laboratory concerning the biological activities of osteoblasts (bone forming cells) and osteoclasts (bone resorbing cells). The technical problems of specimen preparation of cells which shrink more than the substrate to which they are attached have been convered previously (Boyde et al. 1977). Such problems obviously affect the lateral, cell to cell inter-relationships more than the cell to substrate effects which we cover here. At present, we can conclude that SEM has made a major contribution to bone biology by permitting observation of normal cells and natural and surrogate substrates. We confidently predict that it will continue to play a pivotal role in the closer observation of cell-cell-substrate interactions particularly in respect of local hormonal effects, as well as in bone pathology and implantology.  相似文献   

18.
Bacteria-hemocyte interactions and phagocytosis in marine bivalves   总被引:7,自引:0,他引:7  
Marine bivalves (such as mussels, oysters, and clams) are widespread mollusks in coastal waters at different latitudes; due to their filter-feeding habits, they accumulate large numbers of bacteria from the harvesting waters and may act as passive carriers of human pathogens. To cope with this challenge, bivalves possess both humoral and cellular defense mechanisms with remarkably effective capabilities. The circulating cells, or hemocytes, are primarily responsible for defense against parasites and pathogens; microbial killing results from the combined action of the phagocytic process with humoral defense factors such as agglutinins (e.g., lectins), lysosomal enzymes (e.g., acid phosphatase, lysozyme), toxic oxygen intermediates, and various antimicrobial peptides. In this work, current knowledge of the mechanisms underlying the interactions between bacteria and the hemolymph components of marine bivalves is summarized. Bacterial susceptibility to hemolymph killing in different bivalve species may be a consequence of the different ability of bacterial products to attract phagocytes, the presence or absence of specific opsonizing molecules, the hemocyte capability to bind and engulf different bacteria, and the different bacterial sensitivity to intracellular killing. The role of soluble (e.g., agglutinins and opsonins) and surface-bound factors in bacterial phagocytosis by hemocytes of the most common marine bivalve species is described and the possibility that environmental temperatures and other seasonal factors may influence this process is considered. Moreover, the potential strategies used by bacteria to evade phagocytic killing by hemocytes are discussed. From the available data it is clear that several questions need further investigation; the elucidation of the factors influencing phagocytosis in bivalves and the fundamental strategies used by bacteria to escape hemolymph killing are important not only to understand bivalve immune defenses but also to explain the persistence of pathogenic bacteria in bivalve tissues and to predict the consequent impact on human health.  相似文献   

19.
Tumorigenesis is always concomitant with microenvironmental alterations. The tumor microenvironment is a heterogeneous and complex milieu, which exerts a variety of stresses on tumor cells for proliferation, survival, or death. Recently, accumulated evidence revealed that metabolic and oxidative stresses both play significant roles in tumor development and progression that converge on a common autophagic pathway. Tumor cells display increased metabolic autonomy, and the hallmark is the exploitation of aerobic glycolysis (termed Warburg effect), which increased glucose consumption and decreased oxidative phosphorylation to support growth and proliferation. This characteristic renders cancer cells more aggressive; they devour tremendous amounts of nutrients from microenvironment to result in an ever‐growing appetite for new tumor vessel formation and the release of more “waste,” including key determinants of cell fate like lactate and reactive oxygen species (ROS). The intracellular ROS level of cancer cells can also be modulated by a variety of stimuli in the tumor microenvironment, such as pro‐growth and pro‐inflammatory factors. The intracellular redox state serves as a double‐edged sword in tumor development and progression: ROS overproduction results in cytotoxic effects and might lead to apoptotic cell death, whereas certain level of ROS can act as a second‐messenger for regulation of such cellular processes as cell survival, proliferation, and metastasis. The molecular mechanisms for cancer cell responses to metabolic and oxidative stresses are complex and are likely to involve multiple molecules or signaling pathways. In addition, the expression and modification of these proteins after metabolic or oxidative stress challenge are diverse in different cancer cells and endow them with different functions. Therefore, MS‐based high‐throughput platforms, such as proteomics, are indispensable in the global analysis of cancer cell responses to metabolic and oxidative stress. Herein, we highlight recent advances in the understanding of the metabolic and oxidative stresses associated with tumor progression with proteomics‐based systems biology approaches. © 2012 Wiley Periodicals, Inc., Mass Spec Rev 32:267–311, 2013  相似文献   

20.
The nonhost interaction of tomato‐Blumeria graminis f. sp. tritici (Bgt) and resistant host interaction of wheat‐Bgt were compared histochemically. The percentage of appressorium formation had no significant difference on tomato and wheat leaves. Papilla formation occurred earlier and more on host wheat than on nonhost tomato leaves, while the incidence of hypersensitive cell death was much higher in the nonhost interaction. Whole‐cell H2O2 accumulation and hypersensitive cell death usually appeared in haustorium‐invaded wheat epidermal cells. In contrast, the vast majority of non‐haustorium epidermal cells were associated with H2O2 accumulation and hypersensitive cell death on tomato. Localized H2O2 accumulation and hypersensitive response were detected in effective papillae in both interactions. The peak percentage of haustorium formation was less than 7% in the nonhost interaction while reached 43% in the incompatible host interaction. These results indicate that hypersensitive cell death and papillae are likely to play an important role in preventing Bgt penetration and development on tomato and wheat leaves, both defense responses involving H2O2 accumulation. This study further implies that the nonhost and incompatible interactions share similar cytological mechanisms. Microsc. Res. Tech. 76:514–522, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号