首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypropylene (PP) and Vectra A950, a thermotropic liquid crystalline polymer (LCP), blends were prepared in a single‐screw extruder with the variation in Vectra A950 content in presence of fixed amount (2%, with respect to PP and LCP mixture as a whole) of ethylene‐acrylic acid (EAA) copolymer as a compatibilizer. Mechanical analysis of the compatibilized blends within the range of LCP incorporations under study (2–10%) indicated pronounced improvement in the moduli, ultimate tensile strength (UTS), and hardness. Fourier transform infrared (FTIR) spectroscopy studies revealed the presence of strong interaction through H‐bonding between the segments of Vectra A950 and the compatibilizer EAA. Morphological studies performed by scanning electron microscopy (SEM) manifested the development of fine fibrillar morphology in the compatibilized PP/Vectra A950 blends, which had large influence on the mechanical properties. Differential scanning calorimetry studies showed an initial drop of the melting point of PP in the presence of EAA followed by enhancement of the same in presence of Vectra A950. TGA showed an increase in the thermal stability for all blends with respect to matrix polymer PP. Rheological studies showed that a very small quantity of Vectra A 950 was capable of reducing the melt viscosity of PP particularly in the lower shear rate region and hence facilitated processibility of the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
It is shown by differential scanning calorimetry (DSC) measurements that lightly sulfonated polystyrene (SPS) is partially miscible with polysulfone (PSF), polycarbonate (PC), polyetherimide (PEI), and a thermotropic liquid crystalline polymer (LCP). Fourier transform infrared analysis confirms that the miscibility of SPS and PSF, and of SPS and PC, comes from the ion–dipole interaction between the sulfonate groups of SPS and the polar groups of PSF and PC, respectively. After the addition of SPS to LCP/PSF, LCP/PC, and LCP/PEI blends, this specific interaction leads to the compatibilization of SPS in these blends, which is revealed by inward glass transition temperature shifts of component polymers in DSC and dynamic mechanical analysis thermograms and by a much finer dispersion of the minor LCP phase in these matrix polymers. The utilization of SPS as the compatibilizer results in a stronger interfacial adhesion between LCP and matrix phases and improves the mechanical performances of LCP/PSF, LCP/PC, and LCP/PEI blends as well. Compared with ternary LCP/PSF, LCP/PC, and LCP/PEI blends with polystyrene as an inert third component, the ternary LCP/SPS/PSF, LCP/SPS/PC, and LCP/SPS/PEI blends have significantly enhanced tensile strengths and moduli, with acceptable processabilities at the same time. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:2141–2151, 1998  相似文献   

3.
Polypropylene (PP) was melt‐blended in a single‐screw extruder with a thermotropic Vectra B‐950 liquid crystalline polymer (LCP) in different proportions. The mechanical properties of such blends were compared in respect of their Young's moduli, ultimate tensile strength (UTS), percent elongation at break, and toughness to those of pure PP. The thermal properties of these blends were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The morphology was studied by using a polarizing light microscope (PLM) and a scanning electron microscope (SEM) while the rheological aspects of the blends and the pure PP were studied by a Haake Rheowin equipment. Mechanical analysis (tensile properties) of the blends showed pronounced improvement in the moduli and the UTS of the PP matrix in the presence of 2–10% of LCP incorporation. TGA of all the blends showed an increase in the thermal stability for all the blends with respect to the matrix polymer PP, even at a temperature of 410°C, while PP itself undergoes drastic degradation at this temperature. DSC studies indicated an increase in the softening range of the blends over that of PP. Morphological studies showed limited mixing and elongated fibril formation by the dispersed LCP phase within the base matrix (PP) at the lower ranges of LCP incorporation while exhibiting a tendency to undergo gross phase separation at higher concentrations of LCP, which forms mostly agglomerated fibrils and large droplets. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 767–774, 2003  相似文献   

4.
Attempts to extend the IPN technology to liquid crystalline polymer (LCP) systems have been made in search for a new approach for enhancing the compatibility of liquid crystalline polymer with engineering thermoplastics. A new type of interpenetrating polymer network based on liquid crystalline polymer : semi‐interpenetrating liquid crystalline polymer network comprising liquid crystalline polymer PET/60PHB (LCP) and crosslinked polystyrene (PS) (for short: semi‐ILCPN LCP/PS) has been successfully prepared. The compatibility and thermal properties of the semi‐ILCPN LCP/PS with different amount of crosslinking agent were investigated by FTIR, SEM, DSC, and TGA, respectively. Furthermore, the possible application of the semi‐ILCPN LCP/PS as a new kind of compatibilizer in PPO/LCP blends was also studied and discussed. Well‐compatibilized PPO/LCP composites with considerably improved mechanical properties were obtained. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1141–1150, 2000  相似文献   

5.
Polypropylene (PP) was melt blended with Vectra B‐950 [a thermotropic liquid crystalline polymer (LCP)], in a single screw extruder in presence of different doses of ethylene acrylic acid (EAA) copolymer, as modifier. The effect of incorporation in different proportions of EAA at a fixed dose of 5% LCP, on mechanical, thermal, morphological, and rheological properties of such blends was studied and the same were compared with that of pure PP and amongst themselves. Mechanical analysis (tensile properties) of the prepared blends exhibited improvements in ultimate tensile strength (UTS), modulus, toughness, hardness, and impact strength of PP matrix with the incorporation of EAA. The improvement in mechanical properties is associated with the formation of LCP fibrils as evidenced by scanning electron microscopy (SEM). A strong interaction through H‐bonding between the segments of Vectra B‐950 and EAA was established by FTIR study. Differential scanning calorimetry (DSC) studies indicated substantial increase in melting point of the blends, and thermogravimetric analysis (TGA) showed that the thermal stability of PP was improved with the addition of LCP and EAA. Rheological properties showed that LCP and EAA drop down the melt viscosity of PP and thus facilitate processibility of blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
The in situ composites based on poly(ethylene 2,6‐naphthalate) (PEN) and liquid crystalline polymer (LCP) were investigated in terms of thermal, rheological, and mechanical properties, and morphology. Inclusion of LCP enhanced the crystallization rate and tensile modulus of the PEN matrix, although it decreased the tensile strength in the PEN‐rich phase. The orientation effect of this blend system was composition and spin draw ratio dependent, which was examined by Instron tensile test. Further, the addition of dibutyltindilaurate (DBTDL) as a reaction catalyst was found to increase the viscosity of the blends, enhance its adhesion between the dispersed LCP phases and matrix, and led to an increase of mechanical properties of two immiscible blends. Hence DBTDL is helpful in producing a reactive compatibilizer by reactive extrusion at the interface of this LCP reinforced polyester blend system. The optimum catalyst amount turned out to be about 500 ppm, when the reaction proceeded in the 75/25 PEN/LCP blend system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2448–2456, 1999  相似文献   

7.
A high‐density polyethylene with grafted maleic anhydride units has been investigated as a compatibilizer for high‐density polyethylene with polyamide 6. The material acts as an effective compatibilizer, causing a marked reduction in dispersed phase size as well as an increase in tensile strength and toughness. Compatibilizer also affects the glass‐transition temperature, crystallization kinetics, and amount of crystalline material for certain blend compositions. The addition of zinc cations, which are effective in increasing ethylene‐acid copolymer compatibilizer performance in low‐density polyethylene/polyamide blends, has little, if any, effect on compatibilizer performance in these high‐density polyethylene/polyamide blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3871–3881, 2007  相似文献   

8.
The addition of small amounts of liquid‐crystalline polymers to thermoplastics leads to the formation of in situ–reinforced materials, with improved processability and mechanical properties. Nevertheless, the lack of adhesion between the thermoplastic and the liquid‐crystalline polymer often occurs, thus requiring the use of compatibilizers. In this case, the results of several previous works show that there is an improvement of strength, usually accompanied by a decrease of toughness and, thus, the interest of LCP/TP blends for industrial applications will certainly increase if both strength and toughness are obtained. Additionally, the emphasis of previous studies has been on the evaluation of the properties of the blend under stationary conditions and not under non‐stationary ones, which are, in fact, those most relevant to processing sequences. Thus, the present work focuses on the influence of type of compatibilizer on the mechanical and rheological properties of polypropylene/LCP blends under nonstationary conditions. In terms of mechanical properties, the traditional increase of tensile strength was obtained for all compatibilizers, which was essentially due to the formation, during processing, of thinner and longer fibrils of LCP dispersed in the matrix than those observed for the noncompatibilized blends. Additionally, an improvement of the impact strength and flexural modulus was also observed for the blend in which a compatibilizer with an elastomeric nature was used. Rheologically, the experiments most sensitive to the structure were those performed in transient shear, with an increase of the transient stress (in the form of an overshoot) of different magnitudes being observed for the different compatibilizers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 694–703, 2005  相似文献   

9.
Polypropylene was melt blended in a single screw extruder with thermo tropic Vectra B‐950 liquid crystalline polymer (copolyester amide) in different proportions in presence of 2% of EAA, ethylene‐acrylic acid copolymer (based on PP) as a compatibilizer. The mechanical properties of such compatibilized blends were evaluated and compared in respect of their Young's Modulii, Ultimate tensile strength, percent elongation at break, and toughness to those of Pure PP. The Morphology was studied by using a polarizing light microscope (PLM) and Scanning electron microscope (SEM). The Thermal characterization of these blends were carried out by differential scanning calorimeter (DSC).The mechanical properties under dynamic conditions of such compatibilized blends and pure PP were studied by dynamic mechanical analyzer (DMA). Mechanical analysis (Tensile properties) of the compatibilized blends displayed improvements in Modulii and ultimate tensile strength (UTS) of PP matrix with the incorporation of 2–10% of LCP incorporation. The development of fine fibrillar morphology in the compatibilized PP/LCP blends had large influence on the mechanical properties. Differential scanning calorimeter (DSC) studies indicated no remarkable changes in the crystalline melting temperature of the blends with respect to that of pure PP. However, an increase in the softening range of the blends over that of PP was observed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
A compatibilization method that consists of the addition of minor amounts of a commercial thermoplastic, which interacts or reacts with both the matrix and the dispersed liquid crystalline polymer (LCP) of thermoplastic/LCP blends, has been tested in the case of poly(ethylene terephthalate)/Vectra A950 (PET/VA) blends by means of the addition of bisphenol A polycarbonate (PC). The smaller particle size, rougher surface of the fibers and higher ductility of the PET/VA blends of a 30% of the PET substituted by PC clearly showed the suitability of PC as a compatibilizer. The moduli of elasticity of the compatibilized and uncompatibilized blends were similar. This was due to the less‐developed fibrillation of the compatibilized blends, a consequences of their smaller particle size and decreased matrix viscosity. These changes counteracted the effects of improved interfacial adhesion. The improved adhesion led to higher ductility and tensile and impact strengths in most of the compatibilized blends.  相似文献   

11.
In a previous article, we reported on the evolution of the morphological and rheological properties along the length extruder for blends of a liquid‐crystalline polymer (LCP), Rodrun LC3000, and polypropylene (PP). In this work, we extended this study to compatibilized PP/Rodrun LC3000 blends, containing 10 wt % LCP and different compatibilizers, to determine the influence of the addition of a compatibilizer during the processing and, consequently, on the final properties of such systems. The results revealed that the addition of compatibilizers led to a decrease in the mean diameters of the LCP structures, in comparison with those presented by the noncompatibilized blend containing the same LCP content. This phenomenon occurred more quickly for those blends in which compatibilization was carried out in an efficient way. Linear oscillatory shear was mainly sensitive to the type of morphology present in the blends, whereas nonlinear oscillatory shear was more sensitive to the evolution in the droplet/fibril size and along the extruder length. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 347–359, 2006  相似文献   

12.
Blends of a PPO–PS alloy with a liquid crystalline polymer have been studied for their dynamic properties, rheology, mechanical properties, and morphology. This work is an extension of our previous work on PPO/LCP blends. The addition of the LCP to the PPO–PS alloy resulted in a marked reduction in the viscosity of the blends and increased processibility. The dynamic studies showed that the alloy is immiscible and incompatible with the LCP at all concentrations. The tensile properties of the blends showed a drastic increase with the increase in LCP concentration, thus indicating that the LCP acted as a reinforcing agent. The tensile strength, secant modulus, and impact strength of the PPO–PS/LCP blends were significantly higher than that of PPO/LCP blends. Morphology of the injection molded samples of the PPO–PS/LCP blends showed that the in situ formed fibrous LCP phase was preserved in the solidified form. A distinct skin–core morphology was also seen for the blends, particularly with low LCP concentrations. The improvement of the mechanical properties of the blends is attributed to these in situ fibers of LCP embedded in the PPO–PS matrix. The improvement in the properties of PPO–PS/LCP over PPO/LCP is also attributed to the addition of the PS which consolidates the matrix. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Blends of fluorocarbon elastomer (FKM) and liquid crystalline polymer (LCP) have been prepared by the melt mixing technique. Processing studies indicated the increase in viscosity with the addition of LCP. The tensile strength, tear strength, and modulus of the elastomer are greatly improved by the addition of the LCP. Dynamic mechanical analysis (DMA) results showed that the shift in the glass transition temperature (Tg) of the elastomer with the addition of LCP and the storage modulus of the blends increased above the Tg of FKM, whereas decreases below the Tg of the elastomer were seen with up to 20 wt% LCP; this suggests that the LCP acts as an effective reinforcing agent above the Tg of FKM. From the thermogravimetric analysis (TGA) and differential thermogravimetry (DTG), we found that the thermal stability of the elastomer enhances by blending with the LCP. The weight loss and the weight loss rate of the FKM decrease enormously with the addition of LCP. From the X‐ray diffraction (XRD) study, it has been observed that the LCP acts as a nucleating agent by increasing the crystallinity of the blend. The failure mechanism of the blends was studied using a scanning electron microscope (SEM). It suggested that the failure occurred in the blends; mainly due to the pull out of the fibrils from the matrix phase and due to lower interfacial adhesion between the LCP phase and the elastomer. POLYM. COMPOS. 26:306–315, 2005. © 2005 Society of Plastics Engineers  相似文献   

14.
Blends of phenolphthalein poly(ether ether ketone) (PEK-C) and a thermotropic liquid crystalline copolyester (LCP), poly[(1-phenylethyl-p-phenylene terephthalate)-co-(1-cumyl-p-phenylene terephthalate)], was prepared via melt mixing. The studies of differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) indicate that the PEK-C/LCP blends display two glass transition temperatures which correspond to those of PEK-C- and LCP-rich phases, respectively. The PEK-C/LCP blends were judged to be partially miscible. Scanning electron microscopy (SEM) was employed to examine the morphology of the blends, and it was observed that all the PEK-C/LCP blends displayed a phase-separated structure. The interface between the PEK-C- and LCP-rich phases is poor. The Young's modulus of the PEK-C/LCP blends was found to increase with LCP content due to the high modulus of the LCP. However, the tensile strength and the elongation at break of the blends greatly decreases with increase of LCP content, owing to the poor interfacial adhesion. From the thermogravity analysis (TGA), it was observed that all the blends exhibited a two-step weight loss mechanism, and the thermal degradation onset temperature of the blends was lowered with the addition of LCP content. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1923–1931, 1998  相似文献   

15.
The polarized infrared (IR) spectroscopy technique was used to evaluate the surface uniaxial molecular orientation of films of poly(ethylene terephthalate) (PET), two thermotropic liquid crystalline polymers (LCPs), Vectra®A950 and Rodrun®LC5000, and their blends obtained by extrusion. The molecular orientation of the LCP and of the crystalline and amorphous PET phases in the draw direction was evaluated along the transverse section of the films and as a function of the blend composition. A compatibilizer agent was used to improve the interfacial adhesion between the PET and LCPs. The results showed that the surface molecular orientation of both LCPs was very high along the draw direction. However, when blended, the orientation of the LCP phase decreased drastically, it was dependent of its content and varied along the transverse section of the extruded films. The maximum orientation was observed in the blend with 5 wt % LCP content and at the position where the shear rate was maxima. The LCP Vectra®A950 showed higher orientation than the Rodrun®LC5000, as a pure material and as blended. For the PET phases, an alignment of the amorphous phase in the draw direction due to the presence of LCP and compatibilizer agent was observed. The crystalline phase of PET, however, showed no significant orientation in the draw direction. The compatibilizer agent proved efficient for both PET/LCP systems. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2241–2248, 2006  相似文献   

16.
Blends of low‐density polyethylene (LDPE) and a glass‐filled thermotropic liquid crystalline polymer (LCP‐g) have been prepared by melt mixing techniques. The thermal transitions, dynamic behavior, morphology and crystalline properties of the blends have been measured by DSC, DMTA, SEM and XRD respectively. The crystallinity decreased with increase in LCP‐g content in the blends. At higher levels of LCP‐g, crystal growth is favored in the PE phase. From DSC, it is found that the thermal stability of the blends increased with the LCP‐g content. The variation of storage modulus, loss modulus and stiffness as a function of blend ratio suggested the phase inversion at the 40–50% level of LCP‐g in the blend. SEM studies revealed that with the increase in LCP‐g content, the flow of the matrix was restricted.  相似文献   

17.
Ternary in situ composites based on poly(butylene terephthalate) (PBT), polyamide 66 (PA66), and semixflexible liquid crystalline polymer (LCP) were systematically investigated. The LCP used was an ABA30/PET liquid crystalline copolyesteramide based on 30 mol % of p‐aminobenzoic acid (ABA) and 70 mol % of poly(ethylene terephthalate) (PET). The specimens for thermal and rheological measurements were prepared by batch mixing, while samples for mechanical tests were prepared by injection molding. The results showed that the melting temperatures of the PBT and PA66 phases tend to decrease with increasing LCP addition. They also shifted toward each other due to the compatibilization of the LCP. The torque measurements showed that the ternary blends exhibited an apparent maximum near 2.5–5 wt % LCP. Thereafter, the viscosity of the blends decreased dramatically at higher LCP concentrations. Furthermore, the torque curves versus the PA66 composition showed that the binary PBT/PA66 blends can be classified as negative deviation blends (NDBs). The PBT/PA66/LCP blends containing up to 15 wt % LCP were termed as positive deviation blends (PDBs), while the blends with the LCP ≥25 wt % exhibited an NDB behavior. Finally, the tensile tests showed that the stiffness and tensile strength of ternary in situ composites were generally improved with increasing LCP content. The impact strength of ternary composites initially increased by the LCP addition, then deteriorated when the LCP content was higher than 10 wt %. The correlation between the mechanical properties and morphology of the blends is discussed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1975–1988, 2000  相似文献   

18.
Rubberwood flour and cellulose have been plasticized by cyanoethylation and then blended with low‐density polyethylene (LDPE). A small quantity of epoxy functionalized polyethylene i.e., polyethylene‐co‐glycidyl methacrylate (PEGMA) has been added to further enhance the mechanical properties. The mechanical properties were measured according to the standard ASTM methods. SEM analysis was performed for both fractured and unfractured blend specimens. The mechanical properties were improved by the addition of PEGMA compatibilizer. LDPE blends with cyanoethylated wood flour (CYWF) showed higher tensile strength and modulus than cyanoethylated cellulose CYC‐LDPE blends. However CYC‐LDPE blends exhibited higher relative elongation at break values as compared with the former. The TGA analysis showed lowering of thermal stability as the filler content is increased and degradation temperature of LDPE is shifted slightly to lower temperature. DSC analysis showed loss of crystallinity for the LDPE phase as the filler content is increased for both types of blends. Dielectric properties of the blends were similar to LDPE, but were lowered on adding PEGMA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 219–237, 2006  相似文献   

19.
Polyamide 66–thermal liquid crystalline polymer (PA66/TLCP) composites containing 10 wt% TLCP was compatibilized by ethylene–propylene–diene‐grafted maleic anhydride terpolymer (MAH‐g‐EPDM). The blending was performed on a twin‐screw extrusion, followed by an injection molding. The rheological, dynamic mechanical analysis (DMA), thermal, mechanical properties, as well as the morphology and FTIR spectra, of the blends were investigated and discussed. Rheological, DMA, and FTIR spectra results showed that MAH‐g‐EPDM is an effective compatibilizer for PA66/TLCP blends. The mechanical test indicated that the tensile strength, tensile elongation, and the bending strength of the blends were improved with the increase of the content of MAH‐g‐EPDM, which implied that the blends probably have a great frictional shear force, resulting from strong adhesion at the interface between the matrix and the dispersion phase; while the bending modulus was weakened with the increase of MAH‐g‐EPDM content, which is attributed to the development of the crystalline phase of PA66 hampered by adding MAH‐g‐EPDM. POLYM. COMPOS., 27:608–613, 2006. © 2006 Society of Plastics Engineers  相似文献   

20.
This article reveals that the already known improved properties of the thermoplastic–liquid crystalline polymer (LCP) blends can be further improved substantially over the corresponding noncompatibilized counterparts by using a reactive in situ type compatibilizer, the styrene–glycidyl methacrylate (SG) copolymer. This SG copolymer has been demonstrated in this article to be an effective reactive compatibilizer to improve the processability, heat deflection temperature, and mechanical properties of Noryl/LCP blends. The epoxy functional groups of the SG copolymer can react with the end groups of PPO (in Noryl) and LCP. The in situ-formed SG–g–LCP copolymer tends to reside along the interface of Noryl–LCP and reduces the interfacial tension during melt processing. The resultant LCP fibers in the Noryl matrix of the compatibilized blends have a higher aspect ratio because the fibers become finer, longer, and tend to form lamellate domains with a greater interphase contact area than those from the noncompatibilized blends. The compatibilized blends also improve the interphase adhesion between Noryl and LCP. The presence of ethyl triphenylphosphonium bromide catalyst promotes the grafting reaction to improve blend compatibilization. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号