首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
张清波  李东林  高建行  李童心  张龙 《功能材料》2022,(12):12196-12202
采用溶胶-凝胶法合成Zn2+掺杂的LiNiO2(LNO)正极材料,研究了不同Zn2+掺杂量对LNO性能的影响。结果表明,2%(摩尔分数)Zn2+掺杂的镍酸锂正极材料(LNO-2Zn)具有优异的循环性能和倍率性能。在1C电流密度下循环100次,LNO-2Zn的容量保持率为80.0%,高于未掺杂LNO的74.8%;在10C大电流密度下,LNO-2Zn的首次放电比容量为112.1 mAh/g,高于未掺杂LNO的48 mAh/g。适量的Zn2+掺杂能够降低Li/Ni混排程度并且抑制有害相变的发生,从而提高LNO的电化学性能。  相似文献   

2.
采用溶液燃烧合成Mg2+掺杂LaFeO3超细粉体, 并利用XRD、SEM、BET和UV-VIS分析Mg2+掺杂量对合成粉体的物相组成、微观形貌和光催化性能的影响。结果表明: Mg2+取代Fe3+形成LaFe1-xMgxO3 (0≤x≤0.2)有限型固溶体。当掺杂量为0.1时(x=0.1), 合成粉体具有最大的比表面积(43.46 m2/g)和较小粒径(径向和长度方向分别为100 nm和150 nm), 因此具有最佳的光催化性能, 在高压汞灯180 min照射下, 对甲基橙溶液(10 mg/L)的降解率达75.2%, 与纯LaFeO3的相比, 光降解率增加26.5%, 且光催化反应符合一级动力学方程。  相似文献   

3.
镁金属电池因为镁金属负极的高体积比容量(3833 mAh/cm3)和高安全性而日益受到关注。然而, Mg2+引起的极化效应抑制了Mg2+在固相中的扩散, 限制了镁金属电池的比容量。锂镁双盐电解液利用Li+代替Mg2+驱动正极反应, 能够绕开Mg2+在固相中扩散缓慢的问题。本工作研究了过渡金属硫化物CoS2在不同锂镁混合电解液中的电化学性能, 并分析了锂盐浓度和充放电电压区间对其转换反应和循环稳定性的影响。添加锂盐的策略提高了CoS2基镁金属电池的转换反应动力学, 当充电电位提高至2.75 V时, Mg-CoS2电池在LiCl-APC电解液中的循环稳定性得到显著提高, 在循环150次后, 其比容量仍能维持在275 mAh/g, 远高于在2.0 V截止电压条件下的33 mAh/g。电池容量衰减与CoS2正极在2.0 V充电电位下Co3S4的不可逆生成有关, 其长期循环中伴随的Co和S元素溶解加剧了容量的不可逆损失。本工作为过渡金属硫族化合物在转换反应型镁电池中的应用提供了一种激活策略。  相似文献   

4.
庄新蝶  全祖浩  周朋飞 《功能材料》2023,(1):1176-1180+1185
锂离子电池由于高能量密度和长循环寿命,被广泛应用在3C电子产品和电动汽车领域,但由于锂资源储量低、分布不均和较高的价格,使得锂离子电池在规模储能领域的应用受到限制。同时,钠离子电池凭借其较低的成本已逐渐发展为锂离子电池的替代品。但Na+较大的离子半径使得钠离子电池在实际中的应用受到限制,因此开发高性能储钠电极材料,成为钠离子电池的研究重点。采用溶胶凝胶法制备Ti掺杂隧道型Na0.55-MnxTi1-xO2作为钠离子电池正极材料,并对其电化学性能和充放电过程相结构演变进行探究。实验表明掺杂适量Ti元素有利于减轻Na+嵌入/脱出过程中晶格参数和相结构的变化,其中Na0.55Mn0.9Ti0.1O2材料表现出最佳的循环稳定性和倍率性能,同时该材料在低温为10℃时的首圈放电比容量为89.5 mAh·g-1,在循环300圈后,容量保持率为91.4%,表明隧道...  相似文献   

5.
由于非直接接触、远程控制、高效及快捷的优点, 光可逆颜色转换材料在信息存储、显示器件、传感器等领域有着重要应用。复合无机材料和有机材料, 实现协同增效, 是新型光驱动可逆颜色转换材料的研究热点之一。本研究采用一步液相合成法制备粒径约为5 nm的锐钛矿型Mg2+掺杂TiO2纳米晶, 通过X射线衍射、透射电子显微镜、X射线光电子能谱、红外光谱和拉曼光谱等表征手段确认材料的组成结构, 并对比研究了Mg2+掺杂TiO2对亚甲基蓝(MB)光可逆颜色转换性能的增强效应。结果表明, 掺杂Mg2+在TiO2晶格中能产生杂质能级, 有效抑制了光生载流子的复合, 提高了TiO2光氧化还原MB的活性; 另一方面, 掺杂Mg2+降低了TiO2纳米晶的吸收波长, 在可见光照射下能够有效地抑制MB向还原态LMB的转变, 提高系统着色速率。这种基于碱金属掺杂TiO2纳米晶的光可逆颜色转换材料在许多光电子器件领域具有潜在的应用价值。  相似文献   

6.
尖晶石锰酸锂(LiMn2O4)具有理论比容量高、热稳定性高、价格低廉、循环性能良好等特点,深受研究者的亲睐,目前已有固相法、燃烧合成法和共沉淀等多种制备方法。为了进一步改善该材料的循环性能,研究者提出了元素掺杂的策略,元素掺杂改性是基于改变材料的晶体结构或材料中部分元素的平均价态来提高材料的电化学性能和结构的稳定性。Si4+掺杂可以取代材料中的部分Mn4+,从而使材料产生Jahn-Teller效应的离子数降低和尖晶石锰酸锂的八面体体积扩大,提高电化学性能。为此,综述了近几年来单一硅元素掺杂及硅与其他元素复合掺杂改性尖晶石型锰酸锂正极材料的研究进展。  相似文献   

7.
富锂层状氧化物是构筑高能量密度锂离子电池富有潜力的正极材料.然而,由于不可逆的结构变化和缓慢的界面动力学,传统的多晶富锂层状氧化物正极材料循环和倍率性能较差.本文提出了一种聚乙烯基吡咯烷酮(PVP-K30)辅助共沉淀制备单晶Li1.2Mn0.54Ni0.13Co0.13O2纳米片的方法.这种方法操作简单、成本低且便于放大生产.所制备的单晶纳米片内部晶格连续且无晶界,缩短了Li+的嵌入/脱嵌路径,加快了电极反应动力学过程.单晶结构还能抑制层状相向尖晶石相的不可逆相变和颗粒内部裂纹的形成,起到稳定层状结构的作用.电化学测试结果表明,所制备的Li1.2Mn0.54Ni0.13Co0.13O2单晶纳米片在0.1 C倍率下的可逆容量为254.5 mA h g-1,在5 C高倍率下循环1000次后容量保持率为71.9%.这种简单的制备纳米...  相似文献   

8.
用喷雾干燥法制备Li1.2Mn0.54Ni0.13Co0.13O2富锂正极材料并表征其结构、形貌以及电化学性能,研究了烧结温度对材料电化学性能的影响。结果表明:这种正极材料具有良好的层状结构,一次颗粒粒径为100 nm左右且分布均匀,样品的首次放电比容量为220.2 mAh/g,库伦效率为72.5%,18个循环后容量保持率为96.8%。电化学阻抗和循环伏安特性的测试结果表明,这种正极材料具有良好的电化学性能。  相似文献   

9.
通过化学沉淀法引入烧结助剂Y3+、La3+和Mg2+, 采用真空烧结工艺制备了半透明Al2O3陶瓷, 并研究了烧结助剂对烧结材料的微观结构、相对密度和透光率的影响。结果表明: 引入的烧结助剂能均匀分散在合成的半透明Al2O3陶瓷中。烧结助剂的最佳引入量为Mg2+(0.15wt%)、Y3+(0.05wt%)和La3+(0.05wt%), 对应的试样在350~800 nm的波长范围内显示出的最高的总透光率(TFT)高于80%。此外, Y3+的掺杂可以促进晶粒生长, 降低孔隙率, 从而提高半透明Al2O3陶瓷的透光率。  相似文献   

10.
用溶胶凝胶法制备了Li1.2Mn0.54Ni0.13Co0.13O2富锂锰基正极材料,用均匀沉淀法对其进行不同比例Al2O3的表面包覆改性,并对其进行XRD、TEM表征和电化学性能分析。结果表明,包覆后的材料保持了原来的层状结构,Al2O3均匀地包覆在材料颗粒表面形成纳米级包覆层。在0.1C、2.0~4.8 V条件下Al2O3包覆量(质量分数)为0.7%的正极材料首次放电容量为251.3 mAh/g,首次库仑效率达到76.1%,100次循环后容量保持率达92.9%。包覆Al2O3抑制了循环过程中的电压衰减,适量的Al2O3包覆使正极材料的电化学性能提高。  相似文献   

11.
采用醋酸蒸汽对共沉淀法制备的0.5Li2MnO3·0.5Li(Ni1/3Co1/3Mn1/3)O2(LLO)三元富锂锰基正极材料进行酸处理,并对酸蒸汽处理前后的材料使用X射线衍射仪、能谱仪(EDS)、扫描电镜(SEM)和电池测试仪进行表征和电化学性能的测试。研究结果表明,酸蒸汽处理过程使得富锂锰基正极材料表面残存的Li2O被清除,同时可在富锂材料颗粒表面形成微量Ni、Co掺杂的尖晶石表面层,抑制了电极与电解质之间的副反应,从而提升材料的电化学性能。酸蒸汽处理24h后的LLO初始放电容量可达到300mAh/g,库伦效率为83%,并且循环200圈之后容量保持率为78%左右。  相似文献   

12.
富锂层状氧化物正极材料(xLi2MnO3·(1-x)LiMO2(M=NiyMnzCo1-y-z….)理论容量高、价格低廉, 是新一代锂离子电池正极材料的候选之一。本文概述了该正极材料的结构, 分析了其在电化学活化过程与循环过程中结构的演变, 探讨了结构变化对正极材料电化学性能的影响规律, 并概括了目前针对该类正极材料电化学性能提升所开展的离子掺杂和表面改性的研究工作, 展望了未来富锂层状氧化物正极材料的发展方向。  相似文献   

13.
为了扩大锂离子电池正极材料LixMn2O4的工作电压范围,在保证良好循环性能的基础上提高材料的容量,本文对S-Co复合掺杂LiMn2O4的合成工艺和电化学性能进行了研究。溶胶-凝胶法合成的各试样均为纯的立方尖晶石相,且结晶状态良好。S-Co复合掺杂综合了S掺杂效应和Co掺杂效应,改善了LiMn2O4的电化学性能,在2.4~4.3V充放电压范围内,初始容量较高,达到170mAh/g,30次循环后容量不但没有衰减而且有一定增加。  相似文献   

14.
采用介孔二氧化硅MCM-41作模板和硅源, 合成了具有介孔结构的可充镁电池正极材料硅酸锰镁. 分别用XRD、SEM、TEM和氮气吸脱附测试研究了合成材料的介孔结构, 并通过循环伏安、恒电流充放电测试比较了介孔与无孔硅酸锰镁材料的电化学性能. 由于介孔材料活性表面较大, 可增加电解液与活性材料的接触, 使材料具有较多的电化学反应位. 因而, 与相应的无孔材料相比, 具有介孔结构的硅酸锰镁材料呈现出较低的充放电极化、较大的放电容量和较高的放电电压平台. 在0.25 mol/L Mg(AlCl2EtBu)2/THF 电解液中, 0.2 C(约62.8 mA/g)充放电速率下, 介孔硅酸锰镁材料首次放电容量可达到241.8 mAh/g, 放电平台为1.65 V ( vs Mg/Mg2+). 设计具有介孔结构的材料为提高可充镁电池正极的电化学性能提供了一条有效的途径.  相似文献   

15.
采用高温固相合成法制备富锂锰基正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54-x)Zn_xO_2(x=0,0.03,0.06,0.10),Zn~(2+)掺杂对Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2的表面特性和电化学性能都有影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱分析、充放电测试、倍率特性测试、循环性能测试,分析了该合成材料的晶体结构、形貌特征、微观结构和电化学性能。富锂锰基正极材料为a-NaFeO_2层状结构,R-3m空间群,结晶度高,结构稳定性好,其中Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.48)Zn_(0.06)O_2的电化学性能较好。掺杂Zn~(2+)可以提高富锂锰基正极材料的充放电比容量、倍率性能、循环性能等电化学性能。  相似文献   

16.
提高钠离子电池正极材料的循环稳定性和比容量是实现其广泛应用的关键,基于引入特定杂元素可优化正极材料结构稳定性和比容量的策略,本研究采用便捷的固相反应法制备O3-Na0.9Ni0.5Mn0.3Ti0.2O2(NMTSbx, x=0,0.02, 0.04, 0.06)系列层状氧化物正极材料,对比研究了Sb掺杂对Na0.9Ni0.5Mn0.3Ti0.2O2正极材料储钠性能的影响。测试结果表明,引入Sb后过渡金属层中氧原子之间的静电斥力减小,晶格间距扩大,有利于Na+的脱嵌。且掺杂Sb所造成的强电子离域降低了整个系统的能量,获得了更有利于循环充放电的稳定性结构。在2.0~4.2 V测试范围下,未掺杂的NMTSb0在1C(240mA·g-1)倍率下初始放电比容量为122.8mAh·g...  相似文献   

17.
具有高容量的LiNiO2(LNO)是高能锂离子电池最受欢迎的正极材料之一,但是其存在结构和界面稳定性差,循环性能不理想等问题.常规Mg、Al元素掺杂可有效改善稳定性,但会导致可逆容量及倍率性能的损失.本文通过分段的共沉淀法制备了铝镁不均匀掺杂的LNO二次球形前驱体,利用不均匀掺杂减少了掺杂剂用量并诱导实现了前驱体表面形貌的重构,煅烧后形成具有疏松多孔表层形貌的二次颗粒.改性后的LNO正极具有良好的循环稳定性(全电池150次循环后容量保持率为95.1%)和大倍率放电能力(10 C时达到177.9 mA h g-1),这是由于比表面积的增加促进了锂离子传输,以及镁、铝的掺杂缓解了LNO循环过程中的有害相变.该工作揭示了通过设计掺杂元素的分布可以有效地调节LNO的形貌、结构和性能,为合成高性能的LNO正极材料提供了新的策略.  相似文献   

18.
锂离子电池因具有能量密度高、循环寿命长、自放电率小和环境污染小等优点,目前成为能源设备领域使用占比最多的一类电化学储能电池.正极材料作为锂离子电池中Li+的主要提供者,其研发始终受到科技工作者的广泛关注.其中,富锂锰基正极材料具有高比容量、高电压和优异的高温性能等优点,被视为极具潜力的正极材料.然而,富锂锰基正极材料在工作中存在稳定性不好的问题,例如富锂锰材料在充放电循环过程中容易发生锂镍混排,导致层状结构坍塌,影响材料性能,进而使得此类正极材料的应用前景受限.因此,近些年研究者对富锂锰基正极材料进行大量改性研究,并获得优异的成果.在所有的改性方法中,离子掺杂改性由于其特殊的机理,成为改性方法中较佳的选择.目前,富锂锰基正极材料离子掺杂的主要形式包括阳离子掺杂、阴离子掺杂、聚阴离子掺杂和共掺杂.阳离子掺杂是现阶段最为常见的掺杂形式,其主要是在过渡金属位置进行掺杂,少部分在Li位进行掺杂.阳离子掺杂能够抑制过渡金属离子向锂层迁移,减缓尖晶石相生成,提高富锂锰基正极材料结构的稳定性.阴离子掺杂主要是弥补和替换充电过程中形成的氧空位,该方法能够抑制氧空位形成,提高正极材料的安全性和库伦效率.聚阴离子掺杂与阴离子掺杂相似,同样是在正极材料的氧位进行掺杂,由于聚阴离子与过渡金属的结合能更强,过渡金属迁移被抑制,层状结构更加稳固,材料性能显著提升.共掺杂是将阳离子和阴离子同时掺杂到正极材料中,该方法具备阴、阳离子单独掺杂时的效果,可以稳定层状结构,并能显著提高正极材料的循环稳定性,提高电池的循环能力.本文总结了富锂锰基正极材料的结构组成、反应机理以及自身存在的缺陷,重点讨论了阳离子掺杂、阴离子掺杂、聚阴离子掺杂和共掺杂等掺杂方法对富锂锰基正极材料性能的影响,分析了现阶段掺杂改性仍存在的问题并展望其未来研究方向,以期为制备稳定和高性能的富锂锰基正极材料提供参考.  相似文献   

19.
曹博  王辉  吕鑫  王娟 《功能材料》2022,(6):6230-6236
P2型层状氧化物正极材料在充放电过程中容易产生Na+/空位有序性和P2到O2/OP4相位转变,导致多个充放电平台。低钠P2型层状氧化物在深度脱钠时容易造成材料结构不稳定,限制了可逆容量。这些缺陷造成P2型层状氧化物正极材料倍率性差和容量快速衰减。为了抑制Na+/空位有序性和相位转变,采用溶剂热法结合Li+掺杂(0,0.05%,0.1%,0.15%摩尔分数)制备出了无多个电压平台和无相位转变的P2型Na0.85Mn0.6Ni0.3Li01O2(NMNL-0.1)层状氧化物正极材料。NMNL-0.1正极材料在2 C电流密度下进行200次循环后的容量保持率为83%,而未掺杂锂的P2型Na0.85Mn2/3Ni1/3O2(NMN)样品的容量保持率为30%。在20 C电流密度下NMNL-0.1正极材料的放电比容量为62.5 mAh·g<...  相似文献   

20.
采用机械球磨结合微波法合成了Cr3+掺杂锂离子电池正极材料Li1-xCrxFePO4。通过X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试研究了Cr3+掺杂方式和掺杂量对样品的物相结构、形貌和电化学性能的影响。实验结果表明,微波法可以快速合成Li1-xCrxFePO4正极材料;以共沉淀掺杂方式合成的样品Li0.99Cr0.01-FePO4具有最好的电化学性能,在室温下以20mA/g进行充放电测试,其首次放电容量为153.59mAh/g,10次循环之后还有149.29mAh/g,容量保持率为97.20%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号