首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Over the past few years, it has become evident that the distinctive pattern of miRNA expression seen in embryonic stem cells (ESCs) contributes to important signals in the choice of the cell fate. Thus, the identification of miRNAs and their targets, whose expression is linked to a specific step of differentiation, as well as the modulation of these miRNAs, may prove useful in the learning of how ESC potential is regulated. In this context, we have studied the expression profile of miRNAs during neural differentiation of ESCs. We have found that miR-125b is upregulated in the first steps of neural differentiation of ESCs. This miRNA targets the BMP4 co-receptor, Dies1, and, in turn, regulates the balance between BMP4 and Nodal/Activin signaling. The ectopic expression of miR-125b blocks ESC differentiation at the epiblast stage, and this arrest is rescued by restoring the expression of Dies1. Finally, opposite to miR-125a, whose expression is under the control of the BMP4, miR-125b is not directly regulated by Transforming Growth Factor beta (TGFβ) signals. These results highlight a new important role of miR-125b in the regulation of the transition from ESCs to the epiblast stage and add a new level of control on TGFβ signaling in ESCs.  相似文献   

3.
4.
The Class III receptor tyrosine kinase Flt3 and its ligand, the Flt3-ligand (FL), play an integral role in regulating the proliferation, differentiation, and survival of multipotent hematopoietic and lymphoid progenitors from which B cell precursors derive in bone marrow (BM). More recently, essential roles for Flt3 signaling in the regulation of peripheral B cell development and affinity maturation have come to light. Experimental findings derived from a multitude of mouse models have reinforced the importance of molecular and cellular regulation of Flt3 and FL in lymphohematopoiesis and adaptive immunity. Here, we provide a comprehensive review of the current state of the knowledge regarding molecular and cellular regulation of Flt3/FL and the roles of Flt3 signaling in hematopoietic stem cell (HSC) activation, lymphoid development, BM B lymphopoiesis, and peripheral B cell development. Cumulatively, the literature has reinforced the importance of Flt3 signaling in B cell development and function. However, it has also identified gaps in the knowledge regarding Flt3-dependent developmental-stage specific gene regulatory circuits essential for steady-state B lymphopoiesis that will be the focus of future studies.  相似文献   

5.
As a Ku70-binding protein of the KUB family, Kub3 has previously been reported to play a role in DNA double-strand break repair in human glioblastoma cells in glioblastoma patients. However, the physiological roles of Kub3 in normal mammalian cells remain unknown. In the present study, we generated Kub3 gene knockout mice and revealed that knockout (KO) mice died as embryos after E18.5 or as newborns immediately after birth. Compared with the lungs of wild-type (WT) mice, Kub3 KO lungs displayed abnormal lung morphogenesis and pulmonary atelectasis at E18.5. No difference in cell proliferation or cell apoptosis was detected between KO lungs and WT lungs. However, the differentiation of alveolar epithelial cells and the maturation of type II epithelial cells were impaired in KO lungs at E18.5. Further characterization displayed that Kub3 deficiency caused an abnormal FGF signaling pathway at E18.5. Taking all the data together, we revealed that Kub3 deletion leads to abnormal late lung development in mice, resulting from the aberrant differentiation of alveolar epithelial cells and the immaturation of type II epithelial cells due to the disturbed FGF signaling pathway. Therefore, this study has uncovered an essential role of Kub3 in the prenatal lung development of mice which advances our knowledge of regulatory factors in embryonic lung development and provides new concepts for exploring the mechanisms of disease related to perinatal lung development.  相似文献   

6.
The let-7 family is the second microRNA found in C. elegans. Recent researches have found it is highly expressed in the cardiovascular system. Studies have revealed the aberrant expression of let-7 members in cardiovascular diseases, such as heart hypertrophy, cardiac fibrosis, dilated cardiomyopathy (DCM), myocardial infarction (MI), arrhythmia, angiogenesis, atherosclerosis, and hypertension. Let-7 also participates in cardiovascular differentiation of embryonic stem cells. TLR4, LOX-1, Bcl-xl and AGO1 are by now the identified target genes of let-7. The circulating let-7b is suspected to be the biomarker of acute MI and let-7i, the biomarker of DCM. Further studies are necessary for identifying the gene targets and signaling pathways of let-7 in cardiovascular diseases. Let-7 might be a potential therapeutic target for cardiovascular diseases. This review focuses on the research progresses regarding the roles of let-7 in cardiovascular development and diseases.  相似文献   

7.
Congenital heart defects (CHD) affect approximately 1% of all live births, and often require complex surgeries at birth. We have previously demonstrated abnormal placental vascularization in human placentas from fetuses diagnosed with CHD. Hand1 has roles in both heart and placental development and is implicated in CHD development. We utilized two conditionally activated Hand1A126fs/+ murine mutant models to investigate the importance of cell-specific Hand1 on placental development in early (Nkx2-5Cre) and late (Cdh5Cre) pregnancy. Embryonic lethality occurred in Nkx2-5Cre/Hand1A126fs/+ embryos with marked fetal demise occurring after E10.5 due to a failure in placental labyrinth formation and therefore the inability to switch to hemotrophic nutrition or maintain sufficient oxygen transfer to the fetus. Labyrinthine vessels failed to develop appropriately and vessel density was significantly lower by day E12.5. In late pregnancy, the occurrence of Cdh5Cre+;Hand1A126fs/+ fetuses was reduced from 29% at E12.5 to 20% at E18.5 and remaining fetuses exhibited reduced fetal and placental weights, labyrinth vessel density and placenta angiogenic factor mRNA expression. Our results demonstrate for the first time the necessity of Hand1 in both establishment and remodeling of the exchange area beyond early pregnancy and in patterning vascularization of the placental labyrinth crucial for maintaining pregnancy and successful fetal growth.  相似文献   

8.
9.
Adipose tissues (AT) expand in response to energy surplus through adipocyte hypertrophy and hyperplasia. The latter, also known as adipogenesis, is a process by which multipotent precursors differentiate to form mature adipocytes. This process is directed by developmental cues that include members of the TGF-β family. Our goal here was to elucidate, using the 3T3-L1 adipogenesis model, how TGF-β family growth factors and inhibitors regulate adipocyte development. We show that ligands of the Activin and TGF-β families, several ligand traps, and the SMAD1/5/8 signaling inhibitor LDN-193189 profoundly suppressed 3T3-L1 adipogenesis. Strikingly, anti-adipogenic traps and ligands engaged the same mechanism of action involving the simultaneous activation of SMAD2/3 and inhibition of SMAD1/5/8 signaling. This effect was rescued by the SMAD2/3 signaling inhibitor SB-431542. By contrast, although LDN-193189 also suppressed SMAD1/5/8 signaling and adipogenesis, its effect could not be rescued by SB-431542. Collectively, these findings reveal the fundamental role of SMAD1/5/8 for 3T3-L1 adipogenesis, and potentially identify a negative feedback loop that links SMAD2/3 activation with SMAD1/5/8 inhibition in adipogenic precursors.  相似文献   

10.
The epicardium is a single cell layer of mesothelial cells that plays a critical role during heart development contributing to different cardiac cell types of the developing heart through epithelial-to-mesenchymal transition (EMT). Moreover, the epicardium is a source of secreted growth factors that promote myocardial growth. CCBE1 is a secreted extracellular matrix protein expressed by epicardial cells that is required for the formation of the primitive coronary plexus. However, the role of CCBE1 during epicardial development was still unknown. Here, using a Ccbe1 knockout (KO) mouse model, we observed that loss of CCBE1 leads to congenital heart defects including thinner and hyper-trabeculated ventricular myocardium. In addition, Ccbe1 mutant hearts displayed reduced proliferation of cardiomyocyte and epicardial cells. Epicardial outgrowth culture assay to assess epicardial-derived cells (EPDC) migration showed reduced invasion of the collagen gel by EPDCs in Ccbe1 KO epicardial explants. Ccbe1 KO hearts also displayed fewer nonmyocyte/nonendothelial cells intramyocardially with a reduced proliferation rate. Additionally, RNA-seq data and experimental validation by qRT-PCR showed a marked deregulation of EMT-related genes in developing Ccbe1 mutant hearts. Together, these findings indicate that the myocardium defects in Ccbe1 KO mice arise from disruption of epicardial development and function.  相似文献   

11.
Changing temperatures are known to affect plant–microbe interactions; however, the molecular mechanism involved in plant disease resistance is not well understood. Here, we report the effects of a moderate change in temperature on plant immune response through Ca2+/calmodulin-mediated signaling. At 30 °C, Pst DC3000 triggered significantly weak and relatively slow Ca2+ influx in plant cells, as compared to that at 18 °C. Increased temperature contributed to an enhanced disease susceptibility in plants; the enhanced disease susceptibility is the result of the compromised stomatal closure induced by pathogens at high temperature. A Ca2+ receptor, AtSR1, contributes to the decreased plant immunity at high temperatures and the calmodulin-binding domain (CaMBD) is required for its function. Furthermore, both salicylic acid biosynthesis (ICS) and salicylic acid receptor (NPR1) are involved in this process. In addition to stomatal control, AtSR1 is involved in high temperature-compromised apoplastic immune response through the salicylic acid signaling pathway. The qRT-PCR data revealed that AtSR1 contributed to increased temperatures-mediated susceptible immune response by regulating SA-related genes in atsr1, such as PR1, ICS1, NPR1, as well as EDS1. Our results indicate that Ca2+ signaling has broad effects on the molecular interplay between changing temperatures as well as plant defense during plant–pathogen interactions.  相似文献   

12.
Drought stress is an important factor that severely affects crop yield and quality. Autophagy has a crucial role in the responses to abiotic stresses. In this study, we explore TaNBR1 in response to drought stress. Expression of the TaNBR1 gene was strongly induced by NaCl, PEG, and abscisic acid treatments. The TaNBR1 protein is localized in the Golgi apparatus and autophagosome. Transgenic Arabidopsis plants overexpressing TaNBR1 exhibited reduced drought tolerance. When subjected to drought stress, compared to the wild-type (WT) lines, the transgenic overexpressing TaNBR1 plants had a lower seed germination rate, relative water content, proline content, and reduced accumulation of antioxidant enzymes, i.e., superoxide dismutase, peroxidase, and catalase, as well as higher chlorophyll losses, malondialdehyde contents, and water loss. The transgenic plants overexpressing TaNBR1 produced much shorter roots in response to mannitol stress, in comparison to the WT plants, and they exhibited greater sensitivity to abscisic acid treatment. The expression levels of the genes related to stress in the transgenic plants were affected in response to drought stress. Our results indicate that TaNBR1 negatively regulates drought stress responses by affecting the expression of stress-related genes in Arabidopsis.  相似文献   

13.
14.
15.
16.
17.
Dysregulation of the transient receptor canonical ion channel (TRPC1) has been found in several cancer types, yet the underlying molecular mechanisms through which TRPC1 impacts pancreatic ductal adenocarcinoma (PDAC) cell proliferation are incompletely understood. Here, we found that TRPC1 is upregulated in human PDAC tissue compared to adjacent pancreatic tissue and this higher expression correlates with low overall survival. TRPC1 is, as well, upregulated in the aggressive PDAC cell line PANC-1, compared to a duct-like cell line, and its knockdown (KD) reduced cell proliferation along with PANC-1 3D spheroid growth by arresting cells in the G1/S phase whilst decreasing cyclin A, CDK2, CDK6, and increasing p21CIP1 expression. In addition, the KD of TRPC1 neither affected Ca2+ influx nor store-operated Ca2+ entry (SOCE) and reduced cell proliferation independently of extracellular calcium. Interestingly, TRPC1 interacted with the PI3K-p85α subunit and calmodulin (CaM); both the CaM protein level and AKT phosphorylation were reduced upon TRPC1 KD. In conclusion, our results show that TRPC1 regulates PDAC cell proliferation and cell cycle progression by interacting with PI3K-p85α and CaM through a Ca2+-independent pathway.  相似文献   

18.
19.
The expression ratio between the analysed gene and an internal control gene is the most widely used normalization method for quantitative RT-PCR (qRT-PCR) expression analysis. The ideal reference gene for a specific experiment is the one whose expression is not affected by the different experimental conditions tested. In this study, we validate the applicability of five commonly used reference genes during different stages of mouse lung development. The stability of expression of five different reference genes (Tuba1a, Actb Gapdh, Rn18S and Hist4h4) was calculated within five experimental groups using the statistical algorithm of geNorm software. Overall, Tuba1a showed the least variability in expression among the different stages of lung development, while Hist4h4 and Rn18S showed the maximum variability in their expression. Expression analysis of two lung specific markers, surfactant protein C (SftpC) and Clara cell-specific 10 kDA protein (Scgb1a1), normalized to each of the five reference genes tested here, confirmed our results and showed that incorrect reference gene choice can lead to artefacts. Moreover, a combination of two internal controls for normalization of expression analysis during lung development will increase the accuracy and reliability of results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号