首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
掺锡TiO2复合薄膜的制备和光催化性能的研究   总被引:13,自引:2,他引:11       下载免费PDF全文
通过溶胶-凝胶工艺在玻璃表面制备了均匀透明的掺锡锐钛矿型TiO2光催化复合薄膜,用SEM、XRD、XPS等对薄膜进行了表征。薄膜中除含有Ti,O, Sn等元素外,还存在一定量的来自有机前驱物未完全燃烧的C元素和从玻璃表面扩散到薄膜中的Na和Ca元素。甲基橙水溶液的光催化降解实验表明:掺锡TiO2复合薄膜的表观降解速率常数明显高于未掺锡TiO2薄膜的表观降解速率常数,这为进一步提高TiO2薄膜的光催化活性开辟了新的途径。   相似文献   

2.
使用水热法在掺氟SnO2涂覆的导电玻璃(FTO)基板上生长TiO2纳米线,随后在TiO2纳米线上采用水热法生长WO3纳米线,制备出WO3/TiO2复合薄膜。通过循环伏安法(CV)、计时电流法(CA)、计时电量法(CC)等电化学测试技术研究了WO3/TiO2复合薄膜的电致变色性能;采用紫外分光光度计对薄膜的着色﹑漂白状态的响应时间进行测试。通过以上测试,计算得到了薄膜的循环稳定性﹑光调制﹑着色效率和切换时间(YX)等参数。结果显示WO3/TiO2复合薄膜的电致变色性明显提高,其中WO3/TiO2复合薄膜可逆性增加了6%,着色效率提高了40.96 cm2/C。   相似文献   

3.
为了寻求廉价、高效和稳定的光催化剂,用复合电沉积技术在紫铜片上制备了Sn/TiO2薄膜,经300℃热氧化使之形成SnO2/TiO2复合电极.利用SEM,XRD对薄膜进行了表征,以甲基橙为模型化合物,对复合电极的光催化和光电催化性能进行了测定.研究表明:该薄膜由0.3~1μm的颗粒构成,每个颗粒又由纳米晶粒形成;电极具有多孔结构,膜中的SnO2以两种不同的晶体结构存在;在薄膜质量相等的情况下,SnO2/TiO2薄膜的光催化活性是纯TiO2粒子膜的2.87倍;外加一定偏压下,其催化性能大幅度提高.  相似文献   

4.
王咚  黄颖为 《包装工程》2016,37(21):86-91
目的利用添加剂改善离子液体溶剂再生纤维素的性能。方法以离子液体为纤维素溶剂,利用柔性聚丁二酸丁二醇酯(PBS)增韧纤维素薄膜,并对复合薄膜的结构进行研究。利用拉伸实验仪和扫描电子显微镜,研究复合薄膜的力学性能及拉伸机理。结果 PBS质量分数为1%时,复合薄膜的拉伸强度和断裂伸长率由纯纤维素的45.6 MPa和7.21%提高到58 MPa和15.6%,分别提高了30.7%和48.2%。结论 PBS是以共混的形式存在于纤维素基体中,它们之间没有化学键作用,PBS的含量显著影响其颗粒的大小和分散状态。低含量下PBS微颗粒均匀分散在纤维素基体内,降低了纤维素分子间氢键的密度,有利于纤维素分子链滑移,增强复合薄膜韧性。  相似文献   

5.
以SeO2,CdCl2.5/2H2O,H2SO4为原料,采用三电极体系,分别在ITO玻璃和TiO2纳米管阵列基底上沉积CdSe薄膜。研究了不同沉积电压(-0.6,-0.7,-0.8,-0.9V,均相对于SCE)下制备的复合薄膜的晶体结构和微观形貌,并测试了其光电性能。结果表明:制备出的纳米粒子呈不均匀团聚状态;随沉积电压的增大,光吸收增强,光响应电流增大,在沉积电压为-0.8V时复合薄膜的光响应电流达到最大值,但此沉积电压下的薄膜容易剥落。综合考虑薄膜质量和光响应电流,沉积电压为-0.7V时制备的复合薄膜最佳。  相似文献   

6.
将微晶纤维素溶解于NaOH-尿素的低温溶液中形成纤维素溶液, 在水浴中再生形成纳米纤维素溶液。然后将纳米纤维素溶液与TiO2(P25)混合, 并添加少量的钛酸正丁酯作为交联剂形成复合溶液。将制备得到的复合溶液通过流延法固载到玻璃片表面形成玻璃固载的TiO2/纳米纤维素复合膜。通过SEM、XRD表征了复合膜的形貌与结构。将玻璃固载的TiO2/纳米纤维素复合膜在紫外光下进行光催化降解甲基橙(MO)以评估复合膜的光催化性能, 研究了纳米TiO2含量对复合膜光催化性能的影响, 复合膜的重复使用性能以及光降解的动力学过程。结果表明: 复合膜对MO的光催化降解能力可达90%以上, 与纯TiO2粉末相当, 并重复使用3次光催化性能基本保持不变。复合膜对甲基橙的降解动力学符合一级动力学特征。当纳米TiO2相对于纤维素的质量分数为33.3%时, 光催化活性最高, 动力学速率常数为0.035 min-1。  相似文献   

7.
采用熔融共混法通过双螺杆挤出机制备了不同类型(亲水型和疏水型)的纳米二氧化硅(SiO2)和聚己二酸丁二醇-对苯二甲酸丁二酸酯(PBAT)/左旋聚乳酸(PLLA)/SiO2共混薄膜,分析了纳米SiO2添加比例对共混薄膜热性能、力学性能及阻隔性能的影响.结果表明,随着纳米SiO2的添加,共混体系中PBAT组分的结晶温度(T...  相似文献   

8.
中频交流反应溅射TiO2薄膜的制备及性能研究   总被引:2,自引:0,他引:2  
利用中频交流磁控溅射设备用金属Ti靶制备出了TiO2薄膜.用椭偏仪测试了TiO2薄膜的厚度和折射率,用俄歇电子能谱、扫描电子显微镜、X射线衍射仪和紫外及可见光分光光度计分别测试了TiO2薄膜的表面成分、表面形貌、晶体结构及其紫外及可见光透射谱,并初步探讨了工艺因素对薄膜性质的影响.实验结果表明所制备的氧化钛薄膜O/Ti比符合化学计量比,而且O/Ti比随O2流量的变化不大;TiO2薄膜结构主要为锐钛矿型;薄膜表面致密;TiO2薄膜光学性能较好,透射比较高;但O2流量较低时透射比明显下降.  相似文献   

9.
纳米TiO2 / 再生纤维素复合薄膜的制备及光催化性能   总被引:4,自引:5,他引:4       下载免费PDF全文
在1-烯丙基-3-甲基咪唑氯室温离子液体中, 将纳米TiO2粉末与纤维素浆粕进行溶液共混, 所得纤维素用水再生后, 经过超临界CO2干燥处理, 制备了不同TiO2 含量的纳米TiO2 / 再生纤维素复合膜。通过扫描电子显微镜(SEM) 、X 射线衍射(XRD) 、傅立叶变换红外光谱( FTIR) 对所得薄膜的形貌、结构进行表征。利用PCC-2 型光催化活性检测仪测试薄膜在紫外光下光催化降解亚甲基蓝的能力, 评价薄膜的光催化活性。讨论了纳米TiO2 含量、超临界CO2 干燥和真空干燥对薄膜性能的影响。结果表明: 复合膜的光催化活性达到所用TiO2粉体的90 %; 经超临界CO2 干燥处理所得复合膜的光催化活性明显高于真空干燥所得复合膜的活性; 纳米复合膜的光催化活性随TiO2 含量的增加先升高后降低, 含量为5 %时光催化活性最高。   相似文献   

10.
采用磁控溅射法制备纳米TiO2抗菌PBT/PET面料,并对其抗菌、服用性能进行分析表征。结果表明,PBT/PET织物TiO2薄膜与纤维表面结合牢度较好,溅射纳米TiO2镀膜PBT/PET织物具有优良的抗菌性,其金黄色葡萄球菌ATCC 6538、大肠杆菌ATCC 8099的抑菌圈宽度分别达到5.61mm和5.52mm。磁控溅射TiO2镀膜PBT/PET织物经洗涤30次和摩擦后6min的织物其抗菌性能稍有下降。经过磁控溅射纳米TiO2镀膜后,抗菌PBT/PET织物的刚柔性、透气性等服用性能没有明显的变化。  相似文献   

11.
本文采用溶胶凝胶旋涂法在普通玻璃上制备了掺杂不同Fe3+浓度及不同Zn2+浓度的TiO2薄膜,并对薄膜进行了500℃退火处理。分析讨论不同Fe3+及Zn2+掺杂浓度下TiO2薄膜的光催化性能,得出了铁离子最佳掺杂浓度为0.5%,锌离子最佳掺杂浓度为5%。并利用XRD、SEM、UV-Vis对不同掺杂离子的薄膜进行了对比分析,结果表明:Fe2O3/TiO2和ZnO/TiO2薄膜在可见光范围内均具有很好的光透过性(>80%),ZnO/TiO2薄膜光催化性能略优于Fe2O3/TiO2薄膜,最佳状态下ZnO/TiO2薄膜的光降解率能达到Fe2O3/TiO2薄膜的两倍。  相似文献   

12.
采用溶胶-凝胶法在导电玻璃上制备了致密-多孔复合TiO2薄膜,采用场发射扫描电镜(FE-SEM)和紫外-可见分光光度计,分析了光阳极薄膜的表面形貌和吸光度;用天然染料组装了DSSC,研究了致密膜成膜方式和陈化时间对DSSC电学性能的影响。结果表明:致密膜自然晾干的光阳极具有最好的表面形貌,DSSC具有较大的短路电流,当溶胶陈化时间为48h时,复合TiO2薄膜具有最大的吸光度,制备的DSSC电性能具有最大的开路电压和短路电流。  相似文献   

13.
采用静电纺丝技术与溶剂热法相结合制备了γ-Bi2O3/TiO2复合纤维光催化材料.利用X射线衍射(XRD)、扫描电镜(SEM)、电子能谱(EDS)、透射电镜(TEM)、高分辨透射电镜(HRTEM)和紫外–可见吸收光谱(UV-Vis)等分析测试手段对材料进行了表征,并以罗丹明B(RB)的脱色降解为模式反应,考察了材料的可见光催化性能.结果表明:γ-Bi2O3纳米片均匀地生长在TiO2纤维上,形成了具有异质结构的γ-Bi2O3/TiO2复合纤维光催化材料,其光谱响应范围拓宽至可见光区,有利于TiO2光生电子和空穴的分离,增强了体系的量子效率.与纯TiO2纤维相比可见光催化活性明显提高,对RB的脱色率达87.8%.  相似文献   

14.
直流反应溅射TiO2薄膜的制备及其性能研究   总被引:3,自引:1,他引:3  
采用直流反应磁控溅射的方法,溅射高纯钛靶在ITO石英衬底上制备了TiO2薄膜.用XRD、Raman光谱、AFM和紫外-可见光分光光度计分别测试了TiO2薄膜的结构、表面形貌和紫外-可见光透射谱,研究了工艺因素中溅射气压、氧氩比和退火温度对薄膜结构的影响.采用C(胶)/TiO2/ITO三层结构研究了锐钛矿TiO2薄膜的紫外光响应.实验结果表明较低的溅射气压、合适的氧氩比和较高的退火温度有利于锐钛矿TiO2薄膜的结晶.在2 V的偏压下,锐钛矿TiO2薄膜的紫外光响应上升迟豫时间约为3 s,稳定光电流可达到2.1 mA,对紫外光的灵敏性和稳定的光响应表明TiO2薄膜有可能成为一种新的紫外光探测器材料.  相似文献   

15.
高韧性PET/PBT合金的制备及性能   总被引:3,自引:0,他引:3  
甲基丙烯酸环氧丙酯接枝乙烯-辛烯共聚物(POE-g-GMA)用于聚对苯二甲酸乙二醇酯(PET)/聚对苯二甲酸丁二醇酯(PBT)共混物的增韧改性,同时考察了PET、PBT组成变化对共混体系性能的影响。结果表明,加入15%~20%(质量分数,下同)的POE-g-GMA共混体系发生脆韧转变,冲击强度最高可达890 J/m,实现超韧;基体的剪切屈服和橡胶粒子的空洞化是增韧PET/PBT共混物主要形变机理。  相似文献   

16.
纳米TiO2薄膜的低温制备   总被引:1,自引:0,他引:1  
王庆辉  靳映霞  朱忠其  张瑾  柳清菊 《功能材料》2004,35(Z1):2937-2939
采用液相沉积法,在90℃下制备了纳米锐钛矿型TiO2薄膜.采用XRD、UV透射光谱、薄膜表面接触角的测量、厚度的测量及亚甲基蓝降解等手段研究了TiO2薄膜的性能.结果表明所制备的TiO2薄膜具有较好的超亲水特性及光催化活性,在可见光范围内具有较好的透明性,其平均透光率在80%以上.  相似文献   

17.
为了提高聚丁二酸丁二醇酯(PBS)基复合材料的性能,降低生产成本,采用熔融共混法制备了麦秸粉/PBS-聚己二酸-对苯二甲酸丁二醇共聚酯(PBAT)复合材料,利用60Co-γ射线对该复合材料进行了辐射改性。研究了辐射改性对麦秸粉/PBS-PBAT复合材料力学性能、热稳定性和热变形温度的影响,并采用FTIR和SEM表征了复合材料的结构和断面形貌。结果表明:当三烯丙基异氰脲酸酯(TAIC)的含量为1wt%时,复合材料经30 kGy剂量辐射后,其拉伸强度、弯曲强度和冲击强度分别提高了20%、23.5%和6.5%;辐射改性提高了复合材料的高温分解速率,使其热变形温度上升了约11℃,并增强了复合材料组分间的粘结性。  相似文献   

18.
采用环状对苯二甲酸丁二醇酯(CBT)原位聚合制备了玻璃纤维(GF)增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料。研究了聚合温度及催化剂用量对PCBT粘均分子量、结晶度以及GF/PCBT复合材料力学性能的影响。结果表明,随着聚合温度的升高,PCBT的粘均分子量及结晶度逐渐增大并趋于稳定,GF/PCBT复合材料力学性能也不断增大;当聚合温度为210℃时,PCBT的粘均分子量为7.16×104 g/mol,结晶度为43.9%,GF/PCBT复合材料的拉伸和弯曲强度分别为(271.44±3.40)和(257.70±3.73)MPa。随着催化剂用量的增大,PCBT的粘均分子量和结晶度逐渐增大并趋于稳定,复合材料力学性能不断增强;当催化剂用量为0.4%(质量分数)时,PCBT的粘均分子量为7.13×104 g/mol,结晶度为44.4%,GF/PCBT复合材料的拉伸和弯曲强度分别为(265.10±3.31)和(260.30±2.03)MPa。  相似文献   

19.
梁建  马淑芳  赵君芙  许并社 《材料导报》2013,27(8):28-31,39
采用简单易行的低压化学气相沉积法(LPCVD)在GaAs、Si和玻璃衬底上沉积了TiO2薄膜,通过HRXRD、FESEM、EDS等手段对薄膜进行表征,结果表明基片对薄膜的晶相和微观形貌有明显的影响。薄膜的光催化实验结果显示,在可见光的照射下,分解甲基橙溶液时,砷化镓基和硅基TiO2薄膜表现出更强的光催化活性。并探讨了基片对薄膜晶相、微观形貌、光催化活性的影响。  相似文献   

20.
彭绍琴  王添辉  李越湘 《功能材料》2012,43(17):2356-2359
采用溶胶-凝胶法制备了系列Ru/TiO2和Ru/TiO2/SiO2可见光活性光催化剂。通过TEM、XPS、XRD、UV-Vis漫反射和电化学对样品进行了表征。发现Ru和Si的存在可以抑制TiO2的相转变和晶粒生长;Ru掺杂使TiO2和TiO2/SiO2对可见光的吸收增强,也提高了光生电子和空穴的分离,因而,提高了催化剂可见光分解水制氢活性。当Ru在TiO2和TiO2/SiO2中的掺杂量分别为0.014%和0.021%(质量分数)时,光催化剂的可见光活性最高,且Ru/TiO2/SiO2活性为Ru/TiO2的5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号