首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用粉末冶金工艺制备了Mo-30W钼合金棒材, 通过拉伸力学性能测试、硬度测试、光学显微镜(optical microscope, OM)、扫描电子显微镜(scanning electron microscope, SEM) 及能量色散谱仪(energy dispersive spectrometer, EDS) 等测试分析手段, 研究了Mo-30W钼合金棒材的再结晶行为。结果表明, 由于W的固溶强化和变形强化, Mo-30W钼合金棒材在1600℃高温抗拉强度达到170MPa, 延伸率为10%, 高温力学性能得到明显提升; 在1300~1500℃范围内, 随着温度的升高, Mo-30W钼合金棒材强度和硬度先保持稳定然后显著下降; 在1500℃时, Mo-30W钼合金棒材发生了完全再结晶, 抗拉强度为385 MPa, 维氏硬度为HV10 185, 抗拉强度和硬度值达到最低。  相似文献   

2.
采用粉末冶金工艺制备了含不同质量分数氧化锆(ZrO2)的钼合金棒材,通过拉伸力学性能测试、硬度测试、光学显微镜观察等分析手段,研究了ZrO2含量对钼合金显微组织和力学性能的影响。结果表明:ZrO2的添加细化了钼合金晶粒,随着ZrO2质量分数的增加,钼锆合金的硬度和室温抗拉强度增加。当ZrO2质量分数为2.5%时,钼锆合金的硬度达到最大值(HV10 240),抗拉强度达到最大值(820 MPa)。  相似文献   

3.
针对固液掺杂方式制备Mo-La粉末的NO2气体污染性问题,本文通过改变掺杂方式,研究了固-固掺杂、固-固+悬浊液掺杂、固-固+喷水雾掺杂3种掺镧方式对钼镧掺杂粉及其后续烧结与加工性能的影响。结果表明:3种掺杂方式所制备的钼粉表现出不同的烧结特性与加工性能。而采用固固+喷水雾掺杂所制备的钼镧合金粉具有与固-液掺杂几乎相近的粉末形貌与烧结特性。所制备的钼镧合金丝具有高的抗拉强度,对具有污染问题的固-液掺杂制备Mo-La合金粉末起到很好的替代作用。  相似文献   

4.
本文以平均粒度为4. 0μm钼粉和平均粒度为50 nm、0. 5μm和2μm 3种氧化镧粉为原料,采用固-固掺杂法制备了氧化镧含量为1%的3种不同钼镧合金板坯和轧制板材,研究了3种合金的烧结密度、金相、拉伸力学性能和不同热处理后的室温深冲性能。实验结果表明,固-固掺杂钼镧合金板材性能优异,且掺杂氧化镧粉平均粒度的变化对板材的烧结晶粒数、热轧板材的纵、横向显微组织、拉伸性能和深冲性能都有显著影响。  相似文献   

5.
《中国钼业》2008,32(3):32-32
本发明涉及一种稀土钼合金丝材及其制备方法。其特征在于该丝材的合金中含有La2O3和Y2O3两种稀土氧化物,两种稀土氧化物占合金总量的重量百分比为0.4%~1.0%,且La2O3:Y2O3的重量比例为4:1。本发明的制备方法,与采用传统的粉末冶金生产工艺不同,在二氧化钼阶段进行双锥真空干燥液-固掺杂,而后进行二次还原制取二元稀土掺杂钼粉,再经压制、烧结、压力加工等工序制备出规格为Ф0.5~0.8mm Mo—La—Y稀土掺杂钼丝。和纯钼相比较,产品的高温性能好,再结晶温度高,比纯钼提高了300~500℃,具有高强度、高耐磨性、低塑性、使用寿命长等优良性能,在机械加工行业中具有广泛的应用。  相似文献   

6.
采用粉末冶金方法和热轧工艺制备了低氧MHC合金轧制板材,通过化学分析、金相分析、硬度测试、拉伸力学性能测试研究了低氧MHC合金的显微组织和力学性能。研究表明:通过调节C/Hf原子比、钼粉还原并结合真空烧结等手段,可以有效降低合金中的氧含量。不同温度下退火后样品显微组织分析和力学性能测试结果对比表明,合金板材在1 300℃以下为回复阶段,随着退火温度的增加,1 300℃开始发生再结晶,强度和硬度逐渐下降,塑性提高,在1 600℃时再结晶完成,完全再结晶的低氧MHC合金板材塑性优异。  相似文献   

7.
采用了固-液掺杂法制备W-Ni-Sr电极材料,研究了复合粉的成分、形貌/物相,以及材料的烧结工艺对材料微观组织的影响,对比了固-固掺杂法制备W-Ni-Sr电极材料的组织和硬度、电导率和热导率,探讨了钨合金电极材料的优化方向。结果表明:固-液掺杂法制备的W-Ni-Sr复合粉,大部分颗粒大小在1μm以下,Ni和Sr元素在其中分布比较均匀。复合粉具有较好的烧结性能,烧结后钨酸盐均匀弥散分布在钨晶界和晶内,阻碍了晶粒的长大,电极材料的晶粒细小。固-液掺杂比固-固掺杂所制备的钨合金电极材料组织更均匀、细小,性能更好。  相似文献   

8.
研究了Cu-3.2Ni-0.75Si-0.3Zn合金时效前固溶温度和时间对该合金硬度及电导率的影响,并且分析了不同固溶条件之后时效对Cu-3.2Ni-0.75Si-0.3Zn合金性能的影响。结果表明:时效前固溶温度的升高,材料的电导率先较快下降,之后又回升,而硬度呈下降的趋势,当固溶温度到达925℃时,硬度下降缓慢;随着固溶温度的增加,其再结晶程度越来越高,到900℃时组织已是完全再结晶组织,温度继续升高,晶粒会发生长大;通过扫描电镜及能谱分析仪观察900℃固溶后的试样,发现只有少量析出相存在。而相对于固溶温度,固溶时间对合金性能的影响不明显。在不同固溶制度下,合金试样经冷变形和时效后,其电导率随固溶温度的升高先降后升,而抗拉强度和延伸率随固溶温度的升高会先升高后下降,固溶温度为925℃时试样的抗拉强度到达峰值,延伸率则在850℃时达到峰值。与其他固溶处理制度相比,合金在900℃×60 min固溶处理,经60%的冷变形,450℃×4 h时效处理后,可得到较好的综合性能。此时,合金抗拉强度达到762 MPa,延伸率为6.1%,电导率为32.5%IACS。  相似文献   

9.
分别采用固-固、液-固和液-液掺杂方式向钼粉中引入Al2O3,然后用粉末冶金法制备出掺杂钼粉,经压制、烧结制成Al2O3颗粒增强钼基复合材料.对掺杂钼粉及钼坯进行SEM形貌观察,并测定复合材料的密度和显微硬度.结果表明,液-液掺杂能够制备出粉末颗粒小、密度及硬度高的Al2O3/Mo复合材料,其掺杂Al2O3颗粒细小且分布较均匀.  相似文献   

10.
固溶时效工艺对Cu-Ni-Si合金组织和性能的影响   总被引:2,自引:0,他引:2  
用扫描电镜(SEM)、硬度计、涡流电导率测量仪和万能试验机测试分别测量了在850 ~950℃固溶温度及400 ~ 500℃时效不同时间下对Cu-1.5 Ni-0.6Si合金硬度及电导率性能的影响,用金相显微镜观察不同固溶温度下合金的组织.并对合金拉伸形貌断口进行了分析.探讨了合金的强化机理.结果表明:时效前随着固溶温度的升高,材料的硬度及电导率均随之下降,但电导率下降的幅度很小.随着固溶温度的增加,其再结晶程度越来越高,到900℃时组织已是完全再结晶组织,温度继续升高,晶粒会发生长大.时效析出为Cu-1.5 Ni-0.6Si合金的主要强化手段.Cu-1.5Ni-0.6Si固溶后经不同温度时效后,时效初期硬度和电导率快速上升.随后硬度到达峰值后缓慢下降,而电导率继续上升.经过900℃×1h水淬+450℃×2h空冷处理后,合金得到良好的综合性能;其抗拉强度为780.7 MPa,伸长率为15.1%,电导率为40.2% IACS.  相似文献   

11.
纯金属钼存在低温脆性、再结晶脆性、抗高温氧化能力较差等明显缺点,极大限制了其应用范围,通过在钼基体中添加第二相(稀土氧化物(La_2O_3、Ce_2O_3、Y_2O_3)和碳化物(TiC、ZrC、HfC))形成的钼合金因具有良好的高温性能、较低的韧脆转变温度、较高的再结晶温度受到了国内外学者的广泛关注。本文对三种钼合金制备工艺(固–固掺杂、固–液掺杂和液–液掺杂)进行了总结,并对其发展趋势做出了展望,结果表明采用液–液掺杂工艺能显著提高材料的均匀性和力学性能。  相似文献   

12.
本文介绍了Si-Al-K掺杂钼合金的制备工艺及流程,分析了该掺杂方式对钼合金组织和性能以及烧结后密度的影响,综述了Si-Al-K掺杂对钼合金的强化机理,研究了Si-Al-K掺杂对钼丝再结晶温度的提高及高温力学性能方面的改善,对目前掺杂存在的问题进行了分析和展望。  相似文献   

13.
通过固液掺杂法制备了5种不同含量的氧化钇掺杂钼合金粉体,经压结、烧结、轧制后制备成钼合金板材。利用X射线衍射(XRD)分析了钼合金的相组成,用能谱(EDS)表征了钼合金的化学成分,用热-力学物理模拟试验机对钼合金板材在1000~1400℃的高温拉伸性能进行了测试,用维氏显微硬度仪测定了钼合金室温及经高温拉伸后的硬度,用扫描电子显微镜(SEM)观察了钼合金的显微组织和断口形貌。结果表明:钇以氧化钇的形式存在于钼合金中,使其晶粒细化且大小均匀。氧化钇掺杂量对钼合金板材的高温抗拉强度、高温延伸率和高温拉伸后显微硬度有显著的影响。随着氧化钇掺杂量的增多,钼合金的显微硬度逐渐增加。掺杂氧化钇提高了钼合金板材的高温强度、高温延伸率和高温拉伸后的显微硬度,并随着氧化钇掺杂量的增加而增加。当氧化钇的掺杂量为0. 5%(质量分数)时,钼合金板的高温综合性能最好,1000℃时的高温抗拉强度达到428 MPa,延伸率达到12. 7%,拉伸后显微硬度达到HV_(200)252. 8。  相似文献   

14.
由于钼具有室温脆性的特点,对于壁厚大于2.0 mm的钼制品无法在室温下进行冲压成形,因此需研究钼及其合金高温成形的特点,对其进行高温力学性能研究,以便制备出合格的产品,并能保证产品的性能稳定。采用传统固-液掺杂方式制备出Mo-0.8%La的合金粉末,通过粉末冶金方法压制、烧结及轧制出厚度为3.5 mm的板材,在不同的退火温度下对板材组织性能进行分析,并进行高温拉伸试验。结果表明:板材的拉伸工艺中两个比较重要的工艺点为:退火温度1 300℃、冲压温度700℃,在此条件下制备的钼镧合金板材具有较好的热成形性。  相似文献   

15.
《中国钼业》2008,32(3):29-29
本发明涉及一种Mo—La—Ce稀土钼合金丝材及其制备方法。其特征在于该钼合金丝材中含有重量百分比为0.4%~1.0%La2O3和CeO2,且La2O3:CeO2的重量比为4:1。制备方法与传统的粉末冶金生产工艺不同,是将二氧化钼、La(NO3)3、Ce(NO3)4溶液进行真空干燥液-固掺杂,而后进行二次还原制取二元稀土掺杂钼粉,再经压制、烧结、压力加工等工序,制备出规格为Ф0.5~0.8mm Mo—La—Ce稀土掺杂钼丝。本发明的原料廉价、易得,所制备的钼丝抗拉强度高、耐磨性能强、工艺简单、不易弯曲脆断、成品率高、一致性好、使用寿命长。  相似文献   

16.
采用纳米掺杂方法制备了大直径钨镧合金棒坯,通过与纯钨对比,研究了不同氧化镧质量分数的钨镧合金棒坯烧结性能以及含质量分数1.0%纳米氧化镧粉掺杂的钨镧合金锻造棒材的室温性能和高温再结晶性能。结果表明:采用质量分数1.0%、1.5%和2.0%三种含量的纳米氧化镧粉掺杂烧结后,合金掺杂分布和晶粒组织均匀,随着氧化镧含量的增高,棒坯密度逐渐降低、晶粒数逐渐越多;1.0%氧化镧粉掺杂钨镧合金棒坯经过78.7%锻造变形量后,较纯钨棒材硬度值更高,金相组织更细、更均匀,车加工后车削较长,表面光洁度较高,再结晶温度比纯钨高约150℃。  相似文献   

17.
不同粒度钼粉对板材组织的影响   总被引:1,自引:0,他引:1  
通过将不同粒度及形貌的钼粉进行压制烧结成为板坯,再进行轧制加工及不同温度的退火处理观察其显微组织后发现:在同样的烧结工艺下,大粒度钼粉及小粒度钼粉烧结组织的晶粒较大,普通粒度钼粉烧结组织的晶粒细小;在同样的加工工艺下,普通粒度钼粉制备的板坯组织粗大,大粒度钼粉制备的板坯组织较细,小粒度钼粉制备的板坯组织最细小;在1 150~1 200℃退火时,普通粒度钼粉制备板坯的再结晶晶粒数少而晶粒粗大,大粒度钼粉板坯的再结晶晶粒数次之,小粒度钼粉板坯的再结晶晶粒最小;1 300℃时小粒度钼粉板坯的晶粒长大速度最快,而普通粒度钼粉板坯次之,大粒度钼粉板坯最慢。  相似文献   

18.
《中国钼业》2009,33(3):8-8
本发明公开了一种低钾钼粉的制备工艺,该工艺包括下列步骤:1)将钼酸铵一次氢气还原生成二氧化钼;2)将还原生成的二氧化钼进行筛分;3)对筛分后的二氧化钼进行水洗或酸洗;3)水洗或酸洗后的二氧化钼固液分离和/或烘干;4)对固液分离和/或烘干后的二氧化钼进行二次氢气还原生成钼粉;5)钼粉进行筛分即得成品钼粉。在所述水洗或酸洗中,二氧化钼粉与水或稀盐酸的洗涤重量比为1:2—5之间。该制备工艺方法工艺简单,除杂效果显著,能有效地去除钼粉中的钾杂质。  相似文献   

19.
开发出一种钼合金纳米喷雾掺杂工艺及其过程控制方法;采用传统固-液掺杂工艺和纳米喷雾掺杂工艺分别制备出Mo-La合金丝材和板材,并测试其室温力学性能和使用性能;采用透射电镜(TEM)和经典弥散强化理论,分析了纳米掺杂钼合金强韧化机制。结果表明,按照1∶20的纳米粉末与去离子水的最大固液质量比、经过30 min搅拌制备的纳米悬浮液在在线搅拌装置和空气压力作用下,通过适当结构的喷头喷淋到Mo O2粉末中,可实现钼合金的纳米掺杂;液体介质中纳米粉末离散稳定性检测方法和钼合金粉末中掺杂元素微观均匀性检测方法可对纳米喷雾掺杂工艺的制备过程实现实时控制;在相同成分下,纳米喷雾掺杂工艺制备的Mo-La合金丝、板材的综合力学性能和使用寿命均比固-液掺杂工艺提高50%以上。TEM照片和Fisher理论分析结果表明,纳米喷雾掺杂工艺实现了第二相粒子以纳米尺度均匀分布,第二相粒子的尺寸、数量和分布均匀程度远优于固-液掺杂工艺,从而保证了其有效发挥弥散强化作用。  相似文献   

20.
卷轧工艺有着生产效率高、自动化程度高、一致性好等优点。由于卷轧工艺与传统的单件轧制工艺有着较大的差别,所以有必要对卷轨钼带的力学性能和金相组织进行研究。本文通过采用带张力卷轧的工艺制备钼带,并研究分析轧制态和退火后的卷轧钼带金相组织和力学性能,确定了卷轧钼带的初始再结晶温度为850℃、完全再结晶温度为1 050℃。轧制态钼带的抗拉强度达到1 066 MPa,延伸率7.68%,随着退火温度的升高,钼带的抗拉强度逐渐降低,延伸率逐渐升高。完全再结晶后,抗拉强度为510 MPa,延伸率为24%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号