首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contaminants in urban wet weather discharges originate from a number of sources such as materials from wet and dry atmospheric deposition, wastewaters, urban surface erosion, traffic-related activities, in-sewer deposits, etc. In the current study, four contributions (rainwater, dry atmospheric deposition, dry weather discharge and catchment surface + possible erosion of in-sewer deposits) to the total concentrations of priority substances have been assessed at the outlet of two urban catchments (one residential catchment with a combined system and one industrial area with a separate stormwater system) for 12 storm events (six for each catchment). Mass balances were calculated for seven metals and four pesticides, as well as for total suspended solids and chemical oxygen demand. The respective contributions of dry and wet atmospheric deposition, wastewater and catchment surface differ for each pollutant type, corresponding to different land use, activities, environments and sewer systems. For most of the pollutants, the catchment surface appears to be the main contribution, with significant storm event variability, excepted for atrazine in one catchment.  相似文献   

2.
Stormwater and atmospheric deposits were collected on a small residential urban catchment (0.8 ha) near Paris in order to determine the levels of certain micropollutants (using a preliminary scan of 69 contaminants, followed by a more detailed quantification of PAHs, PCBs, alkylphenols and metals). Atmospheric inputs accounted for only 10%–38% of the stormwater contamination (except for PCBs), thus indicating substantial release within the catchment. On this small upstream catchment however, stormwater contamination is significantly lower than that observed downstream in storm sewers on larger adjacent urban catchments with similar land uses. These results likely stem from cross-contamination activity during transfers inside the sewer system and underscore the advantages of runoff management strategies at the source for controlling stormwater pollutant loads. Moreover, it has been shown that both contamination levels and contaminant speciation evolve with the scale of the catchment, in correlation with a large fraction of dissolved contaminants in upstream runoff, which differs from what has been traditionally assumed for stormwater. Consequently, the choice of treatment device/protocol must be adapted to the management scale as well as to the targeted type of contaminant.  相似文献   

3.
Experiments performed on "Marais" catchment, in central Paris, aimed to follow up the quality of wet weather flows from the entry to the exit of a combined sewer network. SS, VSS, COD, BOD5, Cd, Cu, Pb, Zn concentrations were measured for an important number of rain events in roof, yard, street runoff, as well as in dry and wet weather flows at the catchment outlet. Mass entry-exit totals, at the scale of the catchment, were calculated over 31 rain events in order to evaluate the contribution of different types of runoff, of sanitary sewage and of sewer sediments to the total wet weather pollutant loads at the catchment outlet. The erosion of in-sewer pollutant stocks was found to be the main source of particles and of organic matter in wet weather flows, whereas heavy metal loads mainly originated from roof runoff, due to the corrosion of metallic roofs. Particles eroded inside the sewer during rain events were found to be quite different from the particles constituting the main part of sewer sediments: they are organic and biodegradable, with rather important settling velocities and seem to accumulate during dry weather periods. A change of the chemical form of heavy metals was noticed during the transport in the sewer and it is suspected that a fraction of the dissolved metals from the runoff is adsorbed on sewer sediments.  相似文献   

4.
Mercury mobilization in urban stormwater runoff   总被引:1,自引:0,他引:1  
Urban stormwater runoff has been identified as a leading cause of waterway impairment for many pollutants, but there has been a lack of research that directly measures Hg in urban stormwater runoff. The objectives of this research were: to use high frequency sampling to characterize the Hg export dynamics from an urban micro-catchment (i.e. a parking lot) during individual rain events; determine the relationship between suspended sediments and Hg transport; assemble event-scale mass balances of atmospheric Hg inputs, surface storage, and Hg export in runoff to evaluate the relative importance of rainfall-derived Hg and surface-derived Hg in runoff; and finally, to compare the yield of Hg from the urban micro-catchment to that of a larger mixed land-use urban catchment to evaluate the feasibility of scaling the results. The results found that the highest Hg concentrations in runoff were observed during the rising limb of the hydrograph (first flush effect), which was dominated by particulate bound Hg (84+/-8%). There was a significant relationship between the Hg and total suspended solids (TSS) concentrations in runoff. For all events, the largest Hg flux occurred during the period of peak discharge, even though the Hg concentrations were substantially lower during this period. The catchment surface Hg load (i.e. street dust) varied over the course of the study, but the changes were not clearly linked to the rain events. The mass balance of the Hg inputs and outputs from the catchment showed that it could act as a Hg sink or a source depending on the rainfall characteristics. The export of Hg from the larger mixed land-cover catchment were all within the range of the values from the parking-lot catchment, though tended to be lower as a result of increased retention and fewer sources/disturbance within the catchment.  相似文献   

5.
Accurate quantification of the amount, quality and sources of urban stormwater runoff are a prerequisite for effective stormwater management. The goal of this study was to estimate city-scale stormwater pollutant export, examine the effect of data sources on export estimates, and develop an optimization method for stormwater monitoring. The results were presented for the city of Lahti in southern Finland, where site mean pollutant concentrations (SMCs), annual pollutant loads, and monitoring guidelines for specific land use types were determined for total suspended solids (TSS), nutrients (total nitrogen TN and total phosphorus TP), chemical oxygen demand (COD), and metals (Pb, Zn, Cu, Cr, and Ni). Depending on the data source, differences between estimated pollutant exports ranged from -89% to 215%. Lack of reference data for every urban land use type and differences in land use classification schemes were identified as key factors limiting the accuracy of pollutant load estimation.  相似文献   

6.
Many natural watersheds are increasingly affected by changes in land use associated with suburban sprawl and such alterations may influence concentrations, partitioning, and fluxes of toxic trace metals in fluvial ecosystems. We investigated the cycling of mercury (Hg), monomethylmercury, cadmium, copper, lead, nickel, and zinc in three watersheds at the urban fringe of Dayton, Ohio, over a 13-month period. Metal concentrations were related positively to discharge in each stream, with each metal having a high affinity for suspended particles and Hg also having a noticeable association with dissolved organic carbon. Although not observed for the other metals, levels of Hg in river water varied seasonally and among streams. Yields of Hg from two of the catchments were comparable to that predicted for runoff of atmospherically deposited Hg (∼25% of wet atmospheric flux), whereas the third watershed had a significantly greater annual flux associated with greater particle-specific and filtered water Hg concentrations, presumably from a point source. Fluxes of metals other than Hg were similar among each watershed and suggestive of a ubiquitous source, which could be either atmospheric deposition or weathering. Results of this study indicate that, with the exception of Hg being increased in one watershed, processes affecting metal partitioning and loadings are similar among southwest Ohio streams and comparable to other North American rivers that are equally or less impacted by urban development. Relative differences in land use, catchment area, and presence or absence of waste water treatment facilities had little or no detectable effect on most trace metal concentrations and fluxes. This suggests that suburban encroachment on agricultural and undeveloped lands has either similarly or not substantially impacted trace metal cycling in streams at the urban fringe of Dayton and, by extension, other comparable metropolitan areas.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) and heavy metals were measured in road debris collecting in urban areas and in the suspended sediment (SS) component of runoff from two stormwater catchments in Dunedin, New Zealand. Levels in the road debris ranged from 119-527 microg/g for lead, 50-464 microg/g for copper, 241-1 325 microg/g for zinc and 1.20-11.6 microg/g for sigma16PAH. The SS from the largely rural catchment (20% urban) had similar concentrations to the road debris, indicating that this urban material was the main source of the contaminants measured in the stormwater. Similar PAH fingerprint profiles and isomer ratios indicative of dominant pyrogenic (combustion) sources were also found in these two groups of materials. The SS from the 100% urban catchment contained 2- to 6-fold higher concentrations of metals and 10-fold greater levels of sigma16PAH. The higher levels of lead and copper were probably a result of industrial land uses in this catchment, while the additional zinc was linked to an abundance of zinc-galvanised roofing iron in the catchment's residential suburbs. The PAH profiles and isomer ratios were different for this urban catchment and suggested that a disused gasworks was contributing PAHs to the stormwater runoff.  相似文献   

8.
Pollution loads in urban runoff and sanitary wastewater   总被引:18,自引:0,他引:18  
While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.  相似文献   

9.
This study examined pollutant loads released to receiving water from a typical urban watershed in the Los Angeles (LA) Basin of California by applying a best management practice (BMP) performance model that includes uncertainty. This BMP performance model uses the k-C* model and incorporates uncertainty analysis and the first-order second-moment (FOSM) method to assess the effectiveness of BMPs for removing stormwater pollutants. Uncertainties were considered for the influent event mean concentration (EMC) and the aerial removal rate constant of the k-C* model. The storage treatment overflow and runoff model (STORM) was used to simulate the flow volume from watershed, the bypass flow volume and the flow volume that passes through the BMP. Detention basins and total suspended solids (TSS) were chosen as representatives of stormwater BMP and pollutant, respectively. This paper applies load frequency curves (LFCs), which replace the exceedance percentage with an exceedance frequency as an alternative to load duration curves (LDCs), to evaluate the effectiveness of BMPs. An evaluation method based on uncertainty analysis is suggested because it applies a water quality standard exceedance based on frequency and magnitude. As a result, the incorporation of uncertainty in the estimates of pollutant loads can assist stormwater managers in determining the degree of total daily maximum load (TMDL) compliance that could be expected from a given BMP in a watershed.  相似文献   

10.
Organic and mineral pollutants have become part of today's urban environment. During a rain event, stormwater quality as well as the corresponding contaminant loads is affected by both atmospheric deposition and the various types of impervious surfaces (roads, rooftops, parking lots etc.) on which runoff occurs. This study provides results on stormwater pollution in Paris and its suburbs from three separate storm sewers (n = 20 samples). These results show that the stormwater had been contaminated by 55 chemical substances out of the 88 investigated. A particular attention was given to stormwater particle contamination. Concentrations are provided for: metals, PAHs, PCBs, organotins, alkylphenols, phthalates, pesticides, and VOCs. Our findings are among the first available in the literature since the relevant analyses were all conducted on both the particulate (P) and dissolved (D) phases. For most substances, particles from the three storm sewers were more heavily contaminated than dredged sediments and settleable particles from the Seine River. As a consequence of this finding, the release of untreated stormwater discharges may impact the receiving waters and contribute to sediment contamination.  相似文献   

11.
The wet, dry and total atmospheric depositions of some metals (Al, Cd, Cr, Cu, Fe, Na, Pb and Zn) were sampled at two sites and atmospheric fallout fluxes were determined for these locations. This work, led by two different research groups, allowed to reach two main goals: to define a simple analytical procedure to secure accurate shipboard sampling and analysis of atmospheric deposition, and to assess anthropogenic impacts of heavy metals to the environment. The first step about the validation step showed that the prevalent deposition type was dry deposition which represents 40, 60 and 80% for Cd, Cu and Pb, respectively. This prevalence of dry deposition in total atmospheric fallout supported the necessity of funnel wall rinsing which contains 30, 50 and 40% of collected Cd, Cu and Pb, respectively. Moreover, the reproducibility of atmospheric deposition collection was determined. The second step was performed by comparing two sampling sites. A rural sampling site, situated in Morvan's regional park (250 km south-east of Paris), was chosen for its isolation from any local and regional contamination sources. Fluxes obtained in this area were compared with those obtained at an urban site (Créteil, suburb of Paris) allowing comparison between urban and rural areas and demonstrating the impact of anthropogenic activities on atmospheric deposition of Cr, Cu and Pb.  相似文献   

12.
A comprehensive water quality monitoring program was conducted in the Yeongsan (YS) River, Korea from 2005 to present to investigate wet and dry weather pollutant discharge in an attempt to establish point and non-point pollution management strategies. As part of this monitoring program, 11 heavy metal species were measured during dry and wet weather conditions in the YS River, where Gwangju City (GJ), a subcatchment of the YS River, was further monitored to clarify the responsibility of different metal species discharged into the mainstream. Monthly grab water samples showed that greater amounts of metals along the YS River were discharged during the wet summer months due largely to storm runoff. In addition, further monitoring results revealed that GJ, a highly urbanized area, was a significant contributor of the heavy metals being discharged into the YS River during both wet and dry weather. The most abundant metal species discharged from GJ were manganese, aluminum and iron with different contributions of wet and dry weather flows to the total discharge load. Wet weather flow was a significant contributor to the annual dissolved metal loads, accounting for 44-93% of the annual load depending on the metal species, with the exception of chromium and cadmium (9% and 27%, respectively). Mostly, metal loads during wet weather were shown to be proportional to the rainfall depth and antecedent dry period. A substantial fraction of metals were also associated with solids, suggesting that sedimentation might be an appropriate management practice for reducing the metal load generated in GJ. Overall, although dissolved metal concentrations in YS River were at an acceptable level for aquatic community protection, continual metal discharge throughout the year was considered to be a potential problem in the long-term due to gradual water quality degradation as well as continuous metal accumulation in the system.  相似文献   

13.
Biofiltration is a technology to treat urban stormwater runoff, which conveys pollutants, including heavy metals. However, the variability of metals removal performance in biofiltration systems is as yet unknown. A laboratory study has been conducted with vegetated biofilter mesocosms, partly fitted with a submerged zone at the bottom of the filter combined with a carbon source. The biofilters were dosed with stormwater according to three different dry/wet schemes, to investigate the effect of intermittent wetting and drying conditions on metal removal.Provided that the biofilters received regular stormwater input, metal removal exceeded 95%. The highest metal accumulation occurs in the top layer of the filter media. However, after antecedent drying before a storm event exceeding 3–4 weeks the filters performed significantly worse, although metal removal still remained relatively high. Introducing a submerged zone into the filter improved the performance significantly after extended dry periods. In particular, copper removal in filters equipped with a submerged zone was increased by around 12% (α = 0.05) both during wet and dry periods and for lead the negative effect of drying could completely be eliminated, with consistently low outflow concentrations even after long drying periods.  相似文献   

14.
Total atmospheric deposition, i.e., both wet and dry deposition, was sampled during 11 months in the "Ile-de-France" region, France. Monthly fluxes of aliphatic hydrocarbons (AHs), polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) were studied at three representative sites (two urbanised and one semiurban). A combination of spatial and temporal variability of total fluxes and pollutant fingerprints allows a better understanding of atmospheric pollutant dynamics over this region. In the whole studied area, aggregated total atmospheric fluxes of AHs, PAHs and HMs range from 19 to 33 mg m(-2) y(-1), 99 to 161 mug m(-2) y(-1) and 48 to 103 mg m(-2) y(-1), respectively. The highest values are observed in Paris centre, reflecting the importance of the urban centre as a source of pollutants, with a decline in many atmospheric deposits when moving away from urban areas. The seasonal distribution of these pollutants suggests the impact of residential heating on urban atmospheric deposition of hydrocarbons and the increase of dust loads containing HMs during summer. The qualitative study performed on atmospheric deposition data highlights the main sources of pollutants. Aliphatic fingerprints suggest a marked contribution of biogenic inputs to aliphatic contamination in the whole Ile-de-France region and slight petroleum inputs in urban areas. Aromatic fingerprints, characterised by the great predominance of phenanthrene, fluoranthene and pyrene, associated with some specific ratio values, suggest the mixture of petrogenic and pyrolytic contaminations of atmospheric deposition in the whole "Ile-de-France" region. HM distribution shows the presence of anthropogenic sources of Al and Fe in this area and the stationary sources (incinerators and plants) as a significant source of Si, S and Sb in the urban atmosphere. Moreover, a pollutant mix phenomenon, occurring in such an urban atmosphere, shows a significant influence on atmospheric deposition at the semiurban site.  相似文献   

15.
Heavy metals in urban stormwater runoff can adversely impact aquatic ecosystems. Successful management of such systems requires the accurate prediction of contaminant concentrations. This has created the need for simplistic statistical models. In this study, models were constructed to predict three of the most prevalent heavy metal constituents in urban stormwater: copper (Cu), lead (Pb) and zinc (Zn). Data from the United States, obtained during the Nationwide Urban Runoff Program (NURP), were used to calibrate and verify the models. A comparison of the models revealed that regression models were more accurate than the landuse‐based or metropolitan area averages of event mean concentration (EMC). The regression models also provided insight into important stormwater processes. It was found that pollutant accumulation on the catchment surface was essentially supply limited, and that significant portions of heavy metals originate from highly impervious areas.  相似文献   

16.
Regression models are proposed for accurate estimation of storm runoff load. Regression equations are obtained for the relationship between final cumulative load and flow during direct runoff by each storm event. The models are applied to estimate annual nutrients load by all influent rivers into the Lake Kasumigaura for a model year of average annual rainfall. The load in dry weather is calculated from observed data of all influent rivers. Total annual load for a year is the sum of loads in dry weather days and loads in wet weather days. The ratios of the load in a wet weather day to total annual loads are 29 percent for T‐N, 51 percent for T‐P, 53 percent for T‐COD, 22 percent for D‐N, 22 percent for D‐P and 30 percent for D‐COD.  相似文献   

17.
Priority pollutants in wastewater and combined sewer overflow   总被引:4,自引:1,他引:3  
Implementation of the European Water Framework Directive and its affiliated directives requires Member States to improve their understanding of priority pollutants (PPs) in urban areas and obviously within wastewater systems. As a direct consequence, this study is intended to furnish data on both PP occurrence and the significance of concentrations in wastewater during dry and wet periods within combined sewers. Various sampling sites within the Paris combined sewer network were selected; for each sample, a total of 66 determinants, including metals, polycyclic aromatic hydrocarbons (PAHs), pesticides, organotins, volatile organic compounds, chlorobenzenes, phthalates and alkylphenols, were analysed. A broad range of PPs was observed in wastewater during dry as well as wet weather periods. Of the 66 elements investigated, 33 and 40 priority substances could be observed in raw sewage and wet weather effluent, respectively. As expected, a majority of metals were present in all samples, reflecting their ubiquitous nature. For both periods, chlorobenzenes and most of the pesticides always remained below the limit of quantification, while the majority of other organic pollutants assessed were identified within the microg l(-1) range. As highlighted by the larger number of substances detected in wet weather samples and the significance of their concentrations, runoff via atmospheric inputs and/or surface leaching was found to induce a wider range of PPs (n=40) and lead to higher concentrations of certain metals, PAHs, pesticides and other individual compounds. The data generated during this survey, which constitutes one of the first studies conducted in Europe to report concentrations for a variety of priority substances in wastewater within combined sewers, may be used in the future to identify PPs of potential significance for dry and wet weather periods and targeted for further investigation.  相似文献   

18.
An observatory of urban pollutants was created in Paris for the purpose of assessing the dynamics of wastewater and wet weather flow (WW and WWF) pollutant loads within combined sewers. This observatory is composed of six urban catchments, covering land areas ranging in size from 42 ha to 2581 ha. For a wide array of parameters including total suspended solids (TSS), chemical and biochemical oxygen demand (COD and BOD5), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), heavy metals (Cu and Zn) and polycyclic aromatic hydrocarbons (PAHs), this article is intended to evaluate the contributions of wastewater, runoff and in-sewer processes to WWF pollutant loads through the use of an entry–exit mass balance approach. To achieve this objective, a total of 16 rain events were sampled on these sites between May 2003 and February 2006. This study has confirmed that at the considered catchment scale (i.e. from 42 ha to 2581 ha) the production and transfer processes associated with WWF pollutant loads do not vary with basin scale. Entry–exit chemical mass balances over all catchments and for a large number of rain events indicate that wastewater constitutes the main source of organic and nitrogenous pollution, while runoff is the predominant source of Zn. For Cu, PAHs and TSS, the calculation underscores the major role played by in-sewer processes, specifically by sediment erosion, as a source of WWF pollution. A significant loss of dissolved metals was also observed during their transfer within the sewer network, likely as a consequence of the adsorption of dissolved metals on TSS and/or on sewer deposits. Moreover, the nature of eroded particles was examined and compared to the various sewer deposits. This comparison has highlighted that such particles exhibit similar organic and PAH contents to those measured in the organic layer, thus suggesting that the deposit eroded during a wet weather period is organic and of a nature comparable to the organic layer. Despite the extent of initial field investigations, no organic deposit was observed to be present on sewer lines within the catchments, which implies that this organic deposit is probably present in another form or to be found elsewhere in the main trunks.  相似文献   

19.
Sansalone J  Ying G 《Water research》2008,42(15):4146-4162
Vehicular transportation coupled with urban hydrology is a significant source as well as vector of particulate matter (PM) and particulate-bound metal inventories in urban systems. This study examines the granulometric distribution of metals from dry deposition PM generated from 17 dryfall periods and equilibrium metal partitioning with runoff PM distribution from eight rainfall-runoff events at an urban inter-state watershed in Baton Rouge, LA. Dry deposition PM is a coarse non-uniform gradation with a d(50m)=304mum and a peak surface area at 106mum. Results indicate acid rain is not a significant metal contributor to runoff but is capable of leaching metals from PM to runoff. Retained runoff partitioning resulted in particulate-bound predominance for As, Cd, Cr, Cu, Pb, and Zn while Ca and Mg remained predominately dissolved. The finer PM fraction (<75mum) generates the highest metal concentrations and the highest metal mass is associated with the coarser fraction (>75mum). This coarse fraction is also the most labile when exposed to acidic rainfall; generating up to 90% of the total metal mass leached from the entire PM gradation. Comparing dry deposition and runoff PM of equal mass and size gradation, retained runoff PM is enriched with metals (except Pb). Results indicate the labile coarse fraction of dry deposition PM can be a significant source of metal leaching while runoff PM (mobilized dry deposition PM) stored in a BMP can be metal-enriched with the potential for re-leaching or scour.  相似文献   

20.
Previous studies at the Svartberget catchment in northern Sweden have identified potential terrestrial sources of methylmercury (MeHg) and total mercury (THg) in runoff as well as processes controlling MeHg/Hg transfers from soil to runoff water. This paper considers whether the concepts based on a few seasons of observations are consistent with catchment budgets of MeHg/THg over half a decade. Inter-annual and seasonal variations in the input and output fluxes of THg/MeHg, in open field wet deposition (OF), litterfall (LF) and runoff water are evaluated together with more recently measured concentrations that include the throughfall water (TF) data. The input and output flux data of THg and MeHg from the Svartberget catchment are also compared to those from the G?rdsj?n Catchment. The average annual MeHg input fluxes in OF, TF and LF are 0.08, 0.17 and 0.3 g km(-2) year(-1), respectively. The comparable inputs for THg are 7, 15 and 17 g km(-2) year(-1). Thus, LF is as important as TF for THg inputs, while LF is twice as important as TF for MeHg inputs. The annual output flux of MeHg varied between 0.05 and 0.14 g km(-2) year(-1). The annual output flux of THg varied between 1 and 3.4 g km(-2) year(-1). The large inter-annual variations in catchment output did not follow the smaller variations in atmospheric input. This suggests that changes in climate can effect terrestrial outputs of THg/MeHg to surface water more than atmospheric deposition. These data do not contradict the earlier findings that it is the hydrological and biogeochemical processes in the riparian zone that have a central role in determining the amount of MeHg reaching surface waters from forested catchments. The juxtaposition of major flow paths and organic-rich soils in the riparian zone may create the locations of most importance for net MeHg production, runoff export and a larger pool of MeHg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号