首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
【法国《能源快报》1990年1月16日报道】欧洲经济合作与发展组织的核能机构在最近发表的一篇有关钚燃料的报告中指出,从安全和赢利性的角度看,轻水堆使用钚比使用铀更优越,建立一套使用钚的系统将成为日本长期的研究项目,其目的是更合  相似文献   

2.
【西德《科学概观》1982年第3期第5页报道】细菌和藻类能浓缩一些化学元素。现在西德卡尔斯鲁厄核研究中心的科学家们又发现较发达的有机物也具有这种特性:淡水贝壳能分离和浓缩钚。过去视地衣和苔藓为钚的最有效生物指示剂。它们具有浓缩钚特殊的新陈代谢功能,因此可以用作为钚的“生物分析仪”。现在卡尔斯鲁厄的科学家指出,淡水贝  相似文献   

3.
本文研究了HNO_3浓度对氟化镧载带法(以NH_2OH.HCl为还原剂,NH_4F为沉淀剂)测定总钚量的影响,指出酸度小于0.5N是保证方法可靠的必要条件。对低酸度下钚(Ⅵ)还原载带的机理进行了探讨。并通过实验证明Fe(SA)_2和抗坏血酸可作为氟化镧载带法测定总钚量的还原剂。  相似文献   

4.
【法国《核综论》2001年第3期报道】 法国议会科学技术选择评估局2001年4月初公布了一份关于将军用钚转为民用的报告。 在该报告中,众议员Claude Birraux指出,世界军用钚的存量估计为250 t,它们是冷战的产物。根据2000年签署的协议,美国和俄罗斯同意各自减少30 t钚存量。美国打算将这些钚作为废物,而俄罗斯准备将它们用于民用目的。压水堆能够以MOX燃料的方式使用这些钚。快中子堆更适合,因为它所要求的钚的质量没有压水堆高。 军用钚以再利用其所含的能量。这类反应堆有许多优点,其中最重要的是燃料固有的安全性。弥散在石墨基体中的陶…  相似文献   

5.
【世界核新闻网站2007年9月24日报道】英国皇家学会(即英国国家科学院)发布了一份关于如何处理英国库存的反应堆级钚的报告。报告指出,由于英国对民用乏燃料进行商业后处理,因此民用钚的库存量在过去10年中几乎翻了一番,目前已超过100t。  相似文献   

6.
排泄分数方程建立的前提是自然排泄。促排药物的使用,改变了自然排泄规律,因此便产生了如何根据受促排药物影响的排泄数据估算钚体负荷量的问题。本文给出了利用注钚大鼠用 LTPA 促排后早期粪钚排泄结果估算钚体负荷量的方法,并讨论了将这种方法用于人体钚负荷量估算的可能性。注 DTPA 前大鼠骨钚含量与受 DTPA 影响的粪钚排泄总量的比值为1.3,利用此比值和肝钚含量可估算注入 DTPA 前的体钚负荷量。  相似文献   

7.
为提高激光共振电离质谱(LRIMS)中钚的原子化效率,设计制备了金属包覆钚源,以期提高LRIMS测量痕量钚的灵敏度。本工作设计加工了适用于痕量钚制源的电沉积装置,研究了水相中痕量钚的电沉积条件,实现了痕量钚的定量电沉积;对比研究了金属铂和钛的电镀条件及性能,确定了以钛为包覆层的真空蒸镀条件,实现了镀层厚度为1 μm、金属钛包覆的高效钚源中钚的总沉积率达95%。研究表明,制备的高效钚源经过LRIMS测试,仪器对钚样品的总探测效率为2.5×10-4,原子化效率提高至7.7%,较直接滴加源提高3个数量级,为LRIMS法高灵敏测量环境中痕量钚奠定了基础。  相似文献   

8.
在用堆照钚、镅靶生产超钚元素的化学流程中,首先要提取钚,接着进行超钚元素与镧系元素的分离。TBP萃取法可以实现这二个过程,简化提取超钚元素的化学流程。TBP萃取色层法可以分离钚与镅,也可用此法进行锕系元素与镧系元素的分离。我们在前文的基础上,研究了用含盐析剂的硝酸溶液为洗提液时TBP萃取色层法分离钚和镅、  相似文献   

9.
动力堆辐照元件的切片经溶解、放化分离和纯化后的钚及超钚元素样品分别制成电沉积和VYNS薄膜源,然后采用栅网电离室和Si(Au)半导体α谱仪分别测定了它们的钚及超钚核素的相对及绝对α放射性强度。借助于钚的同位素丰度及部分核数据,获得了元件中的钚的含量。所测得的钚量与库仓滴定法的结果是符合的,钚及超钚含量的变化与元件燃耗变化的趋势是一致的。目前该方法的不确定度为≤1.5%。  相似文献   

10.
关于钚的体内污染的分析,大多数是采用定期收集的尿样和粪样,测量其钚含量。这种方法已建立了多年,至今仍然是监测钚在体内滞留量的最灵敏的方法。尿钚分析数据与体内滞留量之间有定量的关系,可以直接推测体内存留的钚量。它是估算体内钚负荷量的一种实  相似文献   

11.
我国先进核燃料循环技术发展战略的一些思考   总被引:3,自引:0,他引:3  
从核裂变能可持续发展的角度,分析了各种核燃料循环方式的特点,指出了核燃料“一次通过”方式不符合核能可持续发展战略。为了充分利用铀资源并实现核废物的最少化,快堆燃料闭式循环是核裂变能可持续发展的根本出路。本文在介绍了国内外核燃料循环关键技术研究现状和发展趋势的基础上,探讨了我国核燃料循环科技的发展战略,并指出了为实现上述发展战略目标应采取的若干措施。  相似文献   

12.
乏燃料后处理是核燃料循环的关键环节,制约核电的可持续发展。借助于加速器驱动先进核能系统(ADANES)提供的高通量、硬能谱的外源中子,其乏燃料后处理只需除去乏燃料中的挥发性裂变产物和影响次锕系元素嬗变的中子毒物,长寿命的次锕系元素Np、Am、Cm可与二氧化铀一起转化为新的燃料元件在加速器驱动燃烧器中燃烧、嬗变、增殖和产能。基于此,本课题组提出了加速器驱动的乏燃料后处理及再生制备的技术路线,包括高温氧化粉化与挥发、选择性溶解分离和燃料再生制备。本文主要介绍了近几年本课题组在这三方面所取得的一些成就,希望能为加速器驱动先进核能系统的乏燃料后处理提供基础数据。  相似文献   

13.
Environmental harmonization of nuclear energy technology is considered as an absolutely necessary condition in its future successful development for peaceful use. Establishment of Self-Consistent Nuclear Energy System, that simultaneously meets four requirements — energy production, fuel production, burning of radionuclides and safety, strongly relies on the neutron excess generation. Implementation of external non-fission based neutron sources into fission energy system would open the possibility of approaching the Multi-Component Self-Consistent Nuclear Energy System (MC-SCNES) with unlimited fuel resources and zero radioactivity release. This provides strong evidence that nuclear energy could be considered as a base for the future sustainable growth in long perspective.  相似文献   

14.
The United Nation's Intergovernmental Panel on Climate Change (IPCC) review of global warming issues suggests man's activities have resulted in a discemible influence on global climate. The panel identifies options which could be employed to ameliorate the climate influencing greenhouse effect which is attributed primarily to carbon dioxide and other gaseous emissions from fossil fuel energy sources. One option identified is nuclear power, as an alternative energy source which would reduce these emissions. The panel observes that, although nuclear power is a relatively greenhouse gas free energy source, there are a number of issues related to it's use which are slowing it's deployment. This paper enumerates the issues raised by the IPCC and addresses each in turn in the context of CANDU reactors and sustainable development. It is concluded that the issues are not fundamental barriers to expanded installation of nuclear fission energy systems. Nuclear reactors, and CANDU reactors in particular, can meet the energy needs of current generations while enhancing the technological base which will allow future generations to meet their energy needs. The essential requirements of a sustainable system are thus met.  相似文献   

15.
中国是世界上最大的发展中国家,能源消耗位列世界第一。为实现社会、经济的可持续发展,确保能源供应安全和降低环境压力,大力发展包括核能在内的清洁能源是能源发展战略的必然选择。目前,中国的核能经过近30年的发展取得了长足进步,但在能源体系中依然占比很小。鉴于中国的铀资源总体储量有限,仅靠热中子反应堆支撑核能作为主力能源发展难以实现。快堆具有资源利用率高、固有安全性好等优点,配以先进核燃料循环系统,可实现核能的大规模、可持续、环境友好的发展。其中,快堆的发展应遵从先增殖、后嬗变的路线,燃料方面在经过氧化物陶瓷燃料后应尽快过渡到金属燃料;后处理方面初期主要通过水法处理压水堆乏燃料,为快堆提供初装料,后续要尽快实现干法后处理,以缩短增殖燃料的倍增时间和提高整个体系的经济性;同时,还需要同步发展高放废物的处理处置技术。在快堆和先进核燃料循环体系的支撑下,我国的核能能实现在千年量级上作为主力能源发展。  相似文献   

16.
乏燃料后处理湿法工艺技术基础研究发展现状   总被引:3,自引:3,他引:0  
为了保持核能可持续发展,必须相应发展乏燃料后处理技术,以实施快堆闭合核燃料循环。湿法后处理工艺仍以PUREX流程为基础,从乏燃料元件首端处理工艺、萃取工艺的简化和无盐调价等方面开展相应的研究。同时随着动力堆乏燃料元件燃耗的增加,Np、Pu以及高产额裂变产物元素Ru、Tc、Zr等在水法后处理工艺中的行为及形态等影响日趋凸显。本文针对上述问题进行了论述,并提出了相应的研究重点。  相似文献   

17.
Many applications (e.g. terrestrial and space electric power production, naval, underwater and railroad propulsion and auxiliary power for isolated regions) require a compact-high-power electricity source. The development of such a reactor structure necessitates a deeper understanding of fission energy transport and materials behavior in radiation dominated structures. One solution to reduce the greenhouse-gas emissions and delay the catastrophic events' occurrences may be the development of massive nuclear power. The actual basic conceptions in nuclear reactors are at the base of the bottleneck in enhancements. The current nuclear reactors look like high security prisons applied to fission products. The micro-bead heterogeneous fuel mesh gives the fission products the possibility to acquire stable conditions outside the hot zones without spilling, in exchange for advantages – possibility of enhancing the nuclear technology for power production. There is a possibility to accommodate the materials and structures with the phenomenon of interest, the high temperature fission products free fuel with near perfect burning. This feature is important to the future of nuclear power development in order to avoid the nuclear fuel peak, and high price increase due to the immobilization of the fuel in the waste fuel nuclear reactor pools.  相似文献   

18.
In broad terms it is estimated that the world will need 17 TW of additional primary energy to meet its needs by 2050. Much of this growth in energy demand will take place in developing countries. Wind, biomass, solar, nuclear and coal will all compete to fill this gap as oil market share declines. Economics, environmental issues, and public acceptance elements of sustainable development goals will be as important as the engineering issues of efficiency and reliability in this competition.

Nuclear power is increasingly recognized as a principal contender to provide economic, “carbon free” electricity for the grid, but it does not directly provide a transportation fuel as flexible as is gasoline. Nuclear-produced hydrogen might help to fill this transportation fuel gap. This presentation will discuss the processes for manufacture of hydrogen from nuclear heat, and the integration of nuclear-produced hydrogen into the transportation fuel system – in part via synergies with traditional oil, natural gas and coal, and/or synergies with nontraditional shale and tar sands. We will discuss the nuclear hydrogen system as we expect it to appear in 2050 and will discuss some of processes that will provide a pathway to creating that system.  相似文献   


19.
Energy for electricity and transportation is a national issue with worldwide environmental and political implications. The world must have energy options for the next century that are not vulnerable to possible disruption for technical, environmental, public confidence, or other reasons. Growing concerns about the greenhouse effect and the safety of transporting oil may lead to reduced burning of coal and other fossil fuels, and the incidents at Three Mile Island and Chernobyl, as well as nuclear waste storage problems, have eroded public acceptance of nuclear fission. Meeting future world energy needs will require improvements in energy efficiency and conservation. However, the world will soon need new central station power plants and increasing amounts of fuel for the transportation sector. The use of fossil fuels, and possibly even fission power, will very likely be restricted because of environmental, safety, and, eventually, supply considerations. Time is running out for policymakers. New energy technologies cannot be brought to the marketplace overnight. Decades are required to bring a new energy production technology from conception to full market penetration. With the added urgency to mitigate deleterious environmental effects of energy use, policymakers must act decisively now to establish and support vigorous energy technology development programs. The U.S. has invested $8 billion over the past 40 years in fusion research and development. If the U.S. fusion program proceeds according to its present strategy, an additional 40 years, and more money, will be expended before fusion will provide commercial electricity. Such an extended schedule is neither cost-effective nor technically necessary. It is time to launch a national venture to construct and operate a fusion power pilot plant. Such a plant could be operational within 15 years of a national commitment to proceed.Prepared Under Contract for the Agency for Advancement of Fusion Power, Inc., George S. Clemens, President.  相似文献   

20.
Estimates of energy supply versus consumption indicate the middle of this century as the critical point when world energy supply will no longer keep pace with the demand. The demand grows inexorably because of both the world population growth as well as the growth of average per capita energy consumption. Technological and economic progress are closely correlated with per capita energy consumption. Hence the inadequacy of energy supplies will limit the progress of human civilization, stifling its soaring spirit. Conservationism, making incremental improvements in this situation, is completely inadequate. What is needed is a giant step—the development of a new, limitless, clean source of energy—nuclear fusion energy. Nuclear fusion technology, when perfected to fusion-burn only deuterium, will have a fuel supply lasting millions of year, even with continuing energy consumption growth as in the past. Intensive efforts in five decades of Tokamak research has advanced the fusion product up by 107 times, to the point when breakeven is only a step away. The next step necessarily involves international collaboration on an unprecedented scale in ITER—the International Thermonuclear Experimental Reactor, on which work has started in Cadarache France. ITER and later Demo are envisioned to bring online the first commercial nuclear fusion energy reactor by 2050. Using this as the starting point and the history of the uptake of nuclear fission reactors as a guide, a scenario is described here which depicts a not unreasonable rapid take up of nuclear fusion energy starting after the middle of this century. Just into the next century fusion energy should be able to take up the slack and allow Mankind to continue its progress and growth. Because the development of fusion energy is such a complex technological task it is probable that there will be several decades when the constraints of energy shortage will be severely felt as shown by the flattening of the energy consumption from around 2040 to 2100. Such a period of stagnation seems unavoidable even with the envisaged development and rapid adoption of fusion energy. On the other hand without nuclear fusion energy the scenario depicts a severe downturn unavoidably in the fortunes of Mankind with world population shrinking below 5 billion and eventually even lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号