首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wei X  Viadero RC  Bhojappa S 《Water research》2008,42(13):3275-3284
Acid mine drainage (AMD) sludge, a waste product from coal mine water treatment, was used in this study as an adsorbent to develop a cost-effective treatment approach to phosphorus removal from municipal secondary effluents. Batch tests were carried out to study the effects of pH, temperature, concentration, and contact time for phosphorus removal from wastewater. Batch tests were followed by continuous flow tests using a continuous stirred tank reactor (CSTR). Adsorption of orthophosphate onto AMD sludge particles followed the Freundlich isotherm model with an adsorption capacity ranging from 9.89 to 31.97 mg/g when the final effluent concentration increased from 0.21 to 13.61 mg P/L. P adsorption was found to be a rather rapid process and neutral or acidic pH enhanced phosphorus removal. Based on a thermodynamic assessment, P adsorption by AMD sludge was found to be endothermic; consequently, an increase in temperature could also favor phosphorus adsorption. Results from batch tests showed that leaching of metals common to AMD sludges was not likely to be a major issue of concern over the typical pH range (6-8) of secondary wastewater effluents. CSTR tests with three types of water (synthetic wastewater, river water, and municipal secondary effluent) illustrated that P adsorption by AMD sludge was relatively independent of the presence of other ionic species. In treating municipal secondary effluent, a phosphorus removal efficiency in excess of 98% was obtained. Results of this study indicated that it was very promising to utilize AMD sludge for phosphorus removal from secondary effluents and may be relevant to future efforts focused on the control of eutrophication in surface waters.  相似文献   

2.
Fortunato R  Crespo JG  Reis MA 《Water research》2005,39(15):3511-3522
Thiomersal, a toxic organomercurial with a strong bactericidal effect, is the most widely used preservative in vaccine production. As a result, vaccine production wastewaters are frequently polluted with thiomersal concentrations above the European limit for mercury effluent discharges for which there is, presently, no remediation technology available. This work proposes a biotechnological process for the remediation of vaccine production wastewaters based on the biological degradation of thiomersal to metallic mercury, under aerobic conditions, by a mercury resistant bacterial strain. The kinetics of thiomersal degradation by a pure culture of Pseudomonas putida spi3 was firstly investigated in batch reactors using a thiomersal amended mineral medium. Subsequently, a continuous stirred tank reactor fed with the same medium was operated at a dilution rate of 0.05 h(-1), and the bioreactor performance and robustness was evaluated when exposed to thiomersal shock loads. In a second stage, the bioreactor was fed directly with a real vaccine wastewater contaminated with thiomersal and the culture ability to grow in the wastewater and remediate it was evaluated for dilution rates ranging from 0.022 to 0.1 h(-1).  相似文献   

3.
Colloidal organic matter from wastewater treatment plants was characterized and examined with respect to its role in metal distribution by using tangential flow ultrafiltration, liquid chromatography coupled with organic carbon and UV detectors, and an asymmetrical flow field-flow fractionation (AFlFFF) multidetection platform. Results revealed that a humic-like fraction of low aromaticity with an average molar mass ranging from 1600 to 2600 Da was the main colloidal component. High molar mass fractions (HMM), with molar mass ranges between 20 and 200 kDa, were present in lower proportions. Ag, Cd, Cu, Cr, Mn and Zn were found mainly in the dissolved phase (<0.45 μm) and their distribution between colloidal and truly dissolved fractions was strongly influenced by the distribution of dissolved organic carbon. AFlFFF coupled to ICP-MS showed that Ag, Cd, Cu, Cr, Mn and Zn associate to the low molar mass fraction of the colloidal pool, whereas Al, Fe and Pb were equally bound to low and high molar mass fractions.  相似文献   

4.
The removal of divalent metal ions from hard waters or galvanic wastewater by polymer-assisted membrane filtration using alginate was investigated. The ability of this natural polymer to form aggregates and gels in presence of metal ions was studied, in order to carry out metal removal by ultra or micro-filtration. Alginate titrations have shown the presence of amine groups in addition to carboxylates onto the polymer backbone. The binding properties of alginate with divalent cations have been studied, showing an increasing affinity for Ca2+ over Mg2+ as polymer concentration increases, and the relative affinity Pb2+ > or = Cu2+ > Zn2+ > Ni2+. The softening of hard natural waters was achieved successfully and easily, but needs an optimal alginate concentration approximately 4 x 10(-2) M. The alginate powder can be directly added to hard waters. Except for Ni2+, metal-removal was efficient. Polymer regeneration has shown that Cu2+-complexes are labiles.  相似文献   

5.
Stare A  Vrecko D  Hvala N  Strmcnik S 《Water research》2007,41(9):2004-2014
In this paper several control strategies for nitrogen removal are proposed and evaluated in a benchmark simulation model of an activated sludge process. The goal is to determine which control strategy delivers better performance with respect to plant operating costs. In the study, constant manipulated variables and various PI and feedforward control strategies are tested and compared with predictive control, which uses an ideal process model. The control strategies differ in the information used about the process (number of sensors and sensor location) and in the complexity of the control algorithms. To determine the set-points that yield optimal operating costs, an operational map is constructed for each control strategy. Results of the simulation show that with PI and feedforward controllers almost the same optimal operating costs can be achieved as with more advanced MPC algorithms under various plant operating conditions. More advanced control algorithms are advantageous only in cases where the plant is highly loaded and if stringent effluent fines are imposed by legislation.  相似文献   

6.
The occurrence and fate of four estrogens and five alkylphenolic compounds were studied in thirteen plants with various treatment processes, sizes and countries. Complete load mass balance, including water and sludge phases, has shown a high reduction of the total load of hormones, around 90%. The removal of alkylphenols was more variable, due to the degradation of nonylphenol (NP) precursors - alkylphenol polyethoxylates (APnEO) - during the treatment, resulting in significant production of shorter and toxic alkylphenols (NP and short polyethoxylates) that concentrate in the sludges. Under anaerobic conditions, such as anaerobic digestion process, the load of NP was in most cases observed to increase. When considering the environmental impact, the high reduction of endocrine disrupting compounds (EDC) concentrations between raw wastewater and effluent enables to satisfy the requirements of the Water Framework Directive for NP except in very critical situations where the dilution factor of the effluent in the river would be lower than 7. For sludges, the pending European Directive on spreading of sludge on land would be complied with in all cases.  相似文献   

7.
Aminopolycarboxylate chelants (APCs) are extremely useful for a variety of industrial applications, including the treatment of toxic metal-contaminated solid waste materials. Because non-toxic matrix elements compete with toxic metals for the binding sites of APCs, an excess of chelant is commonly added to ensure the adequate sequestration of toxic metal contaminants during waste treatment operations. The major environmental impacts of APCs are related to their ability to solubilize toxic heavy metals. If APCs are not sufficiently eliminated from the effluent, the aqueous transport of metals can occur through the introduction of APCs into the natural environment, increasing the magnitude of associated toxicity. Although several techniques that focus primarily on the degradation of APCs at the pre-release step have been proposed, methods that recycle not only the processed water, but also provide the option to recover and reuse the metals, might be economically feasible, considering the high costs involved due to the chelants used in metal ion sequestration. In this paper, we propose a separation process for the recovery of metals from effluents that contain an excess of APCs. Additionally, the option of recycling the processed water using a solid phase extraction (SPE) system with an ion-selective immobilized macrocyclic material, commonly known as a molecular recognition technology (MRT) gel, is presented. Simulated effluents containing As(V), Cd(II), Cr(III), Pb(II) or Se(IV) in the presence of APCs at molar ratios of 1:50 in H2O were studied with a flow rate of 0.2 mL min−1. The ‘captured’ ions in the SPE system were quantitatively eluted with HNO3. The effects of solution pH, metal-chelant stability constants and matrix elements were assessed. Better separation performance for the metals was achieved with the MRT-SPE compared to other SPE materials. Our proposed technique offers the advantage of a non-destructive separation of both metal ions and chelants compared to conventional treatment options for such effluents.  相似文献   

8.
The removal of hydrophobic organic pollutants in water to surfactant-coated aluminum hydroxide [surfactant-Al(OH)3] was investigated. Anionic surfactants such as sodium dodecyl sulfate (SDS), sodium bis(2-ethylhexyl)sulfosuccinate (AOT), and sodium oleate were sorbed on positively charged aluminum hydroxide at pH 7 and formed hydrophobic aggregates that can incorporate hydrophobic organic pollutants in water. Because of the hydrophobic interaction and decrease in the positive charge, surfactant-Al(OH)3 was coagulated into precipitates that can readily be separated from water. Hydrophobic organic pollutants such as alkylphenols, polycyclic aromatic hydrocarbons, estrogens, chlorinated antifungals, and pesticides were well collected to the precipitates and thus efficiently removed from water. The collection of hydrophobic organic pollutants was correlated to their aqueous-octanol distribution coefficient. The decomposition of hydrophobic organic pollutants was examined using a bacterial agent (Bacillus subtilis). Hydrophobic organic compounds collected to AOT-Al(OH)3 or sodium oleate-Al(OH)3 were insufficiently decomposed. On the other hand, nonylphenol, octylphenol, and pendimethalin collected to SDS-Al(OH)3 were decomposed within 1 week. The decomposition was accelerated by the collection to SDS-Al(OH)3.  相似文献   

9.
A combination of microalgae (Chlorella vulgaris or C. sorokiniana) and a microalgae growth-promoting bacterium (MGPB, Azospirillum brasilense strain Cd), co-immobilized in small alginate beads, was developed to remove nutrients (P and N) from municipal wastewater. This paper describes the most recent technical details necessary for successful co-immobilization of the two microorganisms, and the usefulness of the approach in cleaning the municipal wastewater of the city of La Paz, Mexico. A. brasilense Cd significantly enhanced the growth of both Chlorella species when the co-immobilized microorganisms were grown in wastewater. A. brasilense is incapable of significant removal of nutrients from the wastewater, whereas both microalgae can. Co-immobilization of the two microorganisms was superior to removal by the microalgae alone, reaching removal of up to 100% ammonium, 15% nitrate, and 36% phosphorus within 6 days (varied with the source of the wastewater), compared to 75% ammonium, 6% nitrate, and 19% phosphorus by the microalgae alone. This study shows the potential of co-immobilization of microorganisms in small beads to serve as a treatment for wastewater in tropical areas.  相似文献   

10.
Eight different sewage treatment works were sampled in the North West of England. The effectiveness of the conventional treatment processes (primary sedimentation and biological trickling filters) as well as various tertiary treatment units in terms of both total and dissolved copper removal was evaluated. The removal of total copper across primary sedimentation averaged 53% and were relatively consistent at all sites, however, at three sites the removal of dissolved copper also occurred at this stage of treatment. Removal of total copper by the biological trickling filters averaged 49%, however, substantial dissolution of copper occurred at two sites, which highlighted the unpredictability of this treatment process in the removal of dissolved copper. Copper removal during tertiary treatment varied considerably even for the same treatment processes installed at different sites, primarily due to the variability of insoluble copper removal, with little effect on copper in the dissolved form being observed. The proportion of dissolved copper increased significantly during treatment, from an average of 22% in crude sewages to 55% in the final effluents. There may be the potential to optimise existing, conventional treatment processes (primary or biological treatment) to enhance dissolved copper removal, possibly reducing the requirement for installing any tertiary processes specifically for the removal of copper.  相似文献   

11.
Zhang ML  Sheng GP  Yu HQ 《Water research》2008,42(13):3464-3472
A simple and sensitive method was developed for the determination of low-concentration proteins and carbohydrates in the effluents from biological wastewater treatment reactors using resonance light-scattering (RLS) technique. Two ionic dyes, Congo red and Neutral red were, respectively used as an RLS probes for the determination of proteins and carbohydrates. This method is based on the interactions between biomacromolecules and dyes, which cause a substantial increase in the resonance scattering signal of dyes in the wavelength range of 200-650 nm. The characteristics of RLS spectra of the macromolecule-dye complexes, influencing factors, and optimum analytical conditions for the measurement were explored. The method was satisfactorily applied to the measurement of proteins and carbohydrates in the effluents from 10 aerobic or anaerobic bioreactors, and a high sensitivity were achieved.  相似文献   

12.
By recovery of heat from the raw wastewater in the sewer system, the influent temperature of a wastewater treatment plant (WWTP) is reduced. This can have a negative effect on nitrification in the WWTP, since this process strongly depends on temperature. The analysis of the temperature regime in the WWTP of Zurich, Switzerland, revealed that in the cold season, the effluent temperature is about 0.7 degrees C higher than the influent temperature and that nitrification is not affected by a decrease of the influent wastewater temperature lasting for a couple of hours only, but is significantly affected by a longer lasting temperature decrease. Three diagrams were developed with a steady-state model, from which the consequences of a permanent temperature decrease on the nitrification safety factor, aerobic sludge retention time and total nitrogen removal can be evaluated. Using simulations with a dynamic model, calibrated for the Zurich WWTP, a quantitative relationship between the wastewater temperature and the ammonium effluent concentration was established. This relationship can, in combination with measured effluent concentrations of an existing WWTP, be used to predict the increase of the ammonium effluent concentration in this plant resulting from a permanent decrease of the wastewater influent temperature.  相似文献   

13.
Research has shown that exposure to androgens and progestogens can cause undesirable biological responses in the environment. To date, however, no detailed or direct study of their presence in wastewater treatment plants has been conducted. In this study, nine androgens, nine progestogens, and five estrogens were analyzed in influent and final effluent wastewaters in seven wastewater treatment plants (WWTPs) of Beijing, China. Over a period of three weeks, the average total hormone concentrations in influent wastewaters were 3562 (Wujiacun WWTP)-5400 ng/L (Fangzhuang WWTP). Androgens contributed 96% of the total hormone concentrations in all WWTP influents, with natural androgen (androsterone: 2977 ± 739 ng/L; epiandrosterone: 640 ± 263 ng/L; and androstenedione: 270 ± 132 ng/L) being the predominant compounds. The concentrations of synthetic progestogens (megestrol acetate: 41 ± 25 ng/L; norethindrone: 6.5 ± 3.3 ng/L; and medroxyprogesterone acetate: 6.0 ± 3.2 ng/L) were comparable to natural ones (progesterone: 66 ± 36 ng/L; 17α,20β-dihydroxy-4-progegnen-3-one: 4.9 ± 1.2 ng/L; 21α-hydroxyprogesterone: 8.5 ± 3.0 ng/L; and 17α-hydroxyprogesterone: 1.5 ± 0.95 ng/L), probably due to the wide and relatively large usage of synthetic progestogens in medical therapy. In WWTP effluents, androgens were still the dominant class accounting for 60% of total hormone concentrations, followed by progestogens (24%), and estrogens (16%). Androstenedione and testosterone were the main androgens detected in all effluents. High removal efficiency (91-100%) was found for androgens and progestogens compared with estrogens (67-80%), with biodegradation the major removal route in WWTPs. Different profiles of progestogens in the receiving rivers and WWTP effluents were observed, which could be explained by the discharge of a mixture of treated and untreated wastewater into the receiving rivers.  相似文献   

14.
It has been reported that Medium-Pressure (MP) ultraviolet (UV) lamps have an advantage over low-pressure (LP) lamps for water disinfection in terms of the photoreactivation of pure cultured bacteria. However, few studies have investigated the behavior of microorganisms in wastewater. Hence, in this study, the degree of photoreactivation, after UV exposure using both LP and MP lamps, in municipal wastewater samples was examined under a variety of conditions. Pure cultured Escherichia coli was also used to provide a comparison with previous studies.E. coli was found to undergo photoreactivation after both LP and MP exposure. The Colony Forming Ability (CFA) ratios were 0.60 and 0.32, and the percentage of photoreactivation was 50% and 20%, respectively, for LP and MP lamps with a germicidal UV dose of 5 mJ/cm2. However, the advantage of the MP lamp was diminished for larger UV doses, since no photoreactivation was detected when the UV dose was 15 mJ/cm2 for either LP or MP lamps. The microorganisms present in wastewater showed similar results to those of E. coli, however, no significant difference was found between the use of either a LP or a MP lamp. Also, when a UV dose of 40 mJ/cm2 was applied, the percentage photoreactivation was less than 1%, no matter which type of lamp was used. From this work, it is concluded that the selection of the type of UV lamp for wastewater treatment plants, as regards photoreactivation of total coliforms, is not critical as long as the applied germicidal UV dose is greater than 40 mJ/cm2.  相似文献   

15.
Zhihua Liang 《Water research》2010,44(18):5432-5438
The growing release of nanosilver into sewage systems has increased the concerns on the potential adverse impacts of silver nanoparticles (AgNPs) in wastewater treatment plants. The inhibitory effects of nanosilver on wastewater treatment and the response of activated sludge bacteria to the shock loading of AgNPs were evaluated in a Modified Ludzack-Ettinger (MLE) activated sludge treatment system. Before shock-loading experiments, batch extant respirometric assays determined that at 1 mg/L of total Ag, nitrification inhibitions by AgNPs (average size = 1-29 nm) and Ag+ ions were 41.4% and 13.5%, respectively, indicating that nanosilver was more toxic to nitrifying bacteria in activated sludge than silver ions. After a 12-h period of nanosilver shock loading to reach a final peak silver concentration of 0.75 mg/L in the MLE system, the total silver concentration in the mixed liquor decreased exponentially. A continuous flow-through model predicted that the silver in the activated sludge system would be washed out 25 days after the shock loading. Meanwhile, a prolonged period of nitrification inhibition (>1 month, the highest degree of inhibition = 46.5%) and increase of ammonia/nitrite concentration in wastewater effluent were observed. However, nanosilver exposure did not affect the growth of heterotrophs responsible for organic matter removal. Microbial community structure analysis indicated that the ammonium-oxidizing bacteria and nitrite-oxidizing bacteria, Nitrospira, had experienced population decrease while Nitrobacter was washed out after the shock loading.  相似文献   

16.
Wastewater treatment plants (WWTPs) are energy-intensive facilities. Thus, reducing their carbon footprint is particularly important, both economically and environmentally. Knowing the real operating energy efficiency of WWTPs is the starting point for any energy-saving initiative. In this article, we applied a non-radial Data Envelopment Analysis (DEA) methodology to calculate energy efficiency indices for sampling of WWTPs located in Spain. In a second stage analysis, we examined the operating variables contributing to differences in energy efficiency among plants. It is verified that energy efficiencies of the analyzed WWTPs were quite low, with only 10% of them being efficient. We found that plant size, quantity of organic matter removed, and type of bioreactor aeration were significant variables in explaining energy efficiency differences. In contrast, age of the plant was not a determining factor in energy consumption. Lastly, we quantified the potential savings, both in economic terms and in terms of CO2 emissions, that could be expected from an improvement in energy efficiency of WWTPs.  相似文献   

17.
Electrocoagulation (EC) presents operational advantages over chemical coagulation, including no requirement for the addition of chemicals. This work compares the performance of electrocoagulation in two stages of the urban water cycle: drinking water production and wastewater regeneration. A case study focussed on the treatment of actual effluents from different locations in the centre of Spain is performed. It was observed that electrocoagulation with aluminium anodes is an efficient technique to remove turbidity and total organic carbon (TOC) from surface water and to deplete turbidity and Escherichia coli (E. coli) from urban treated wastewater (taken from the outlet of an urban wastewater treatment facility, WWTF). Although electrocoagulation can be applied to the treatment of both effluents, the technique is more efficient in the case of the production of drinking water from surface sources. This behaviour is related to the nature of the natural organic matters (NOM) present in both effluents.  相似文献   

18.
Endocrine disorders associated with sewage effluents have been documented in aquatic species from various regions of the world and sewage treatment works (STWs) are now widely recognized as one of the major discharge source of endocrine disrupting compounds. Steroid estrogens usually emerge as the main contributors to the endocrine disrupting capacity of municipal sewage effluents. Because human wastes are believed to be the primary source of release of steroid estrogens in watercourses, the presence of these compounds in aquatic systems is likely to constitute a pervasive ecological problem. In spite of that, the endocrine disrupting impact of sewage effluents has rarely been investigated in South America. In this paper, we used Johnson and Williams' predictive model to estimate the concentration of steroid estrogens in effluents released from 38 municipal STWs of central-southern Chile and to assess steroid estrogen concentrations in rivers. In STW effluents, we estimated the estrogen concentrations to range from 9.35 to 739.92 ng/L for estrone, 1.03 to 81.74 ng/L for estradiol and 0.38 to 30.56 ng/L for ethynylestradiol. Overall, the predicted estrogen concentrations are significantly higher than those reported for STW effluents in the literature. This can be explained by demographic and sewage flow differences between Chile and industrialized western countries. Predicted steroid estrogen concentrations at river sites indicate that endocrine disruption in fish is likely to occur in the Itata catchment. However, future research is needed to attest this and to evaluate the real impact of the STW discharges into central-southern Chile's marine and freshwater environments.  相似文献   

19.
In order to better understand the mechanisms of N(2)O emissions from nitrifying activated sludge of urban WWTPs, sludge from the Valenton plant (Paris conurbation) are subjected to lab-scale batch experiments under various conditions of oxygenation. The results show that the highest N(2)O emissions (7.1 microgN-N(2)OgSS(-1) h(-1) in average) occur at a dissolved oxygen (DO) concentration of around 1mgO(2)L(-1). These high emissions at low oxygenation (from 0.1 to 2 mg O(2)L(-1)) are due to two processes: autotrophic nitrifier denitrification and heterotrophic denitrification. Nitrifier denitrification always dominates, representing from 58% to 83% of the N(2)O production. This N(2)O production originating from nitrifying activated sludge becomes 8 times higher when nitrite is added at a DO of 1 mg O(2)L(-1); a decrease is observed both at higher and lower oxygenation. Heterotrophic denitrification represents less than 50% of the N(2)O production, decreasing from 42% to 17% when oxygenation increases from 0.1 to 2 mg O(2) L(-1). We show that ammonium oxidizing bacteria (AOB) can shift to nitrifier denitrification when oxygen is depleted in the environments including in the WWTPs, nitrite then plays the role of oxygen as the final electron acceptor. As opposed to what happens in nitrification, the end products of nitrifier denitrification are gaseous forms of nitrogen, where N(2)O is not negligible compared to N(2). Overall, N(2)O emissions represent 0.1-0.4% of oxidized NH(4)(+), depending on the oxygenation level. N(2)O emissions would range from 0.11 to 0.42 TN-N(2)O day(-1) for a tertiary treatment of the Paris wastewater effluents, consisting exclusively of activated sludge nitrification.  相似文献   

20.
Jia A  Wan Y  Xiao Y  Hu J 《Water research》2012,46(2):387-394
This study developed a method for analysis of nineteen quinolone and fluoroquinolone antibiotics (FQs) in sludge samples, and investigated the occurrence and fate of the FQs in a municipal sewage treatment plant (STP) with anaerobic, anoxic, and aerobic treatment processes. Eleven compounds, including pipemidic acid, fleroxacin, ofloxacin, norfloxacin, ciprofloxacin, enrofloxacin, lomefloxacin, sparfloxacin, gatifloxacin, moxifloxacin, and sarafloxacin (only in sludge), were detected in the STP. The predominance of ofloxacin and norfloxacin, followed by lomefloxacin, ciprofloxacin, gatifloxacin, and moxifloxacin, were found in wastewater, suspended solids, and sludge. The total concentrations of FQs were 2573 ± 241 ng/L, 1013 ± 218 ng/L, and 18.4 ± 0.9 mg/kg in raw sewage, secondary effluent, and sludge, respectively. Extremely low mass change percentages were observed for FQs in anaerobic, anoxic, and aerobic treatment units, suggesting biodegradation to be of minor importance in the removal of FQs in STPs. 50-87% of the initial FQs loadings (except for pipemidic acid (36%)) were ultimately found in the dewatered sludge. Mean removal efficiencies of FQs in the STP were 56-75%, except for new generation drugs such as moxifloxacin (40 ± 5%) and gatifloxacin (43 ± 13%). A significant positive correlation was found between removal efficiencies and Kd of FQs. The major factor in the removal of FQs in the STP was sorption to sludge, which was not governed by hydrophobic interactions. The long-term cycling and persistence of FQs in the STP has made activated sludge as a huge reservoir of FQ antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号