首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of carbon content (0.05, 0.12, and 0.2 wt pct C) and heat-treatment temperature (1100°C and 1300°C for 2 hours and air cooled) on the tensile and the creep properties of Fe-24 wt pct Al alloy. The increase of carbon content increased the yield strength without affecting the tensile ductility of the alloys. Carbon content appears to be beneficial in suppressing the hydrogen embrittlement at the grain boundary, because the fracture mode changes from predominantly intergranular failure in a low carbon (0.05 wt pct C) alloy to a predominantly transgranular cleavage failure in a high carbon (0.2 wt pct C) alloy. With the increase of carbon content, the anomalous yield strength peak shifted to a higher temperature possibly due to the interaction between carbon and vacanies. Significant improvements were noted in the tensile and the creep properties of medium (0.12 wt pct C) and high carbon (0.2 wt pct C) alloys after heat treating at 1300°C. The improvements in the tensile and the creep properties were attributed to the synergetic effect of retained vacancies and fine carbide precipitates present in the alloys after 1300°C heat treatment. However, the improved strength and creep properties associated with 1300 °C heat treatment were lost when the heat-treated alloys were further subjected to a vacancy removal annealing. Our results suggest that the retained vacancies present in the FeAl alloys after high-temperature heat treatment and air cooling are effective in improving the creep resistance at 700°C, and yield strength up to 800°C. The creep resistance of the present high carbon FeAl alloy is comparable to or better than several grades commercial heat-resistant Fe-based and Ni-based alloys. The work was carried out when the authors were with Chrysalis Technologies Inc., Richmond, VA. This article is based on a presentation made in the symposium entitled “Fundamentals of Structural Intermetallics,” presented at the 2002 TMS Annual Meeting, February 21–27, 2002, in Seattle, Washington, under the auspices of the ASM and TMS Joint Committee on Mechanical Behavior of Materials.  相似文献   

2.
The present study investigates the as-quenched mechanical propertiesviz, strength, ductility and sharp notch (K Ic ) as well as blunt notch (Charpy) toughness, of simple Fe/Cr/C alloys with and without titanium as a function of austenitizing temperature. For the ternary Fe/Cr/C alloys the results are consistent with earlier investigations, but the fracture toughness does not change with increasing austenitizing temperatures after 0.2 wt pct Ti is added. The titanium forms carbides (TiC) that did not dissolve, providing a roughly constant number of crack nucleation sites, and preventing austenite grain growth up to 1100°C. The differences in mechanical behavior, particularly the rounded notch toughness, are discussed and explained in terms of the microstructural characteristics of the alloys, as determined by detailed electron microscopy analysis.  相似文献   

3.
Nitride-strengthened, reduced activation, martensitic steel is anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Two nitride-strengthened, reduced activation martensitic steels with different carbon contents were prepared to investigate the microstructure and mechanical property changes with decreasing carbon content. It has been found that both steels had the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and displayed extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 pct in wt pct), the steel with high carbon content (0.012 pct in wt pct) had not only the higher strength but also the higher impact toughness and grain coarsening temperature, which was related to the carbon content. On the one hand, carbon reduction led to Ta-rich inclusions; on the other hand, the grain grew larger when normalized at high temperature because of the absence of Ta carbonitrides, which would decrease impact toughness. The complicated Al2O3 inclusions in the two steels have been revealed to be responsible for the initiated cleavage fracture by acting as the critical cracks.  相似文献   

4.
We proposed a new method for developing Ni-base turbine disc alloy for application at temperatures above 700 °C by mixing a Ni-base superalloy U720LI with a two-phase alloy Co-16.9 wt pct Ti in various contents. The microstructure and phase stability of the alloys were analyzed using an optical microscope, a scanning electron microscope, energy-dispersive spectroscopy, and an X-ray diffractometer. The yield strength was studied by compression tests at temperatures ranging from 25 °C to 1200 °C. The results show that all the alloys had a dendritic structure. Ni3Ti (η) phase was formed in the interdendritic region in the alloys with the addition of Co-16.9 wt pct Ti, and its volume fraction increased with the increase in the addition of Co-16.9 wt pct Ti. The results of exposure at 750 °C show that the addition of Co-16.9 wt pct Ti to U720LI had a great effect on suppressing the formation of σ phase due to the reduced Cr content in the γ matrix. Compared to U720LI, the alloys with the addition of Co-16.9 wt pct Ti possessed higher yield strength. The solid-solution strengthening of γ and γ′ and higher volume fraction of γ′ were assumed to cause this strength increase.  相似文献   

5.
The creep rupture test has been carried out for 18Cr-10Ni-0.1 wt pct C stainless steels bearing individually Ti, Nb(Cb), and V, followed by the microstructural study. The highest value of 700°C-104 h rupture strength in a titanium and niobium series (the steel containing various amounts of titanium and niobium, respectively) has been obtained at Ti/C and Nb/C atomic ratio of 0.8 and 0.2 to 0.4, respectively. On the other hand, in a vanadium series, the creep rupture strength of the steel showed its maximum at V/C atomic ratio of about unity in the testing at the temperature of 700° and 800°C, but at 600°C, the strength increases monotonically with vanadium content up to 1.53 wt pct. Such high strength in the steels con-taining proper amount of Ti, Nb, and V is related mainly with the fine distribution of M23C6 precipitates which is caused by the acceleration of nucleation due to the foregoing precipi-tation of a MC type carbide within the austenite grains. And it has been deduced that the solid solution strengthening effect of the vanadium contributes also to the remarkable in-crease in the rupture strength of the vanadium steel at 600°C.  相似文献   

6.
Supersaturated iron-carbon solid solutions containing 0.06, 0.18, 0.66, 2, 3, and 5 wt pct C were produced by sputter-deposition at 6° to 21°C. Homogeneous deposits of the same carbon composition as the multiphase source materials were produced by high rate (up to 0.0004 in. per hr) sputtering techniques and were 0.005 to 0.027 in. thick. The microhardnesses of the deposits were higher than the hardnesses of martensite with the same carbon content. The hardness increased rapidly from 680 Dph for 0.06 wt pct C content to an unusually high maximum of 1240 Dph at 2 wt pct C and then decreased slowly to 920 Dph at 5 wt pct C. The 0.06, 0.18, and 0.66 wt pct C deposits were bcc, and the 2 and 3 wt pct C deposits were bct. The tetragonality of the 5 wt pct C deposit was detected only after tempering at 150°C. Lattice parameterc/a ratios for the tetragonal deposits were lower than expected from extrapolated martensite data, and they corresponded to the equationc/a=1.06+0.019 (wt pct C). Nevertheless, thec/a ratio of 1.10 for 5 wt pct C deposit was higher than previously observed for martensite. No evidence of a martensitic transformation was found in the microstructures, which typically consisted of 0.5 to 1.0 μ diam columnar grains. Hardness data from tempered eposit samples and the lack of tetragonality of the low carbon deposits indicated that autotempering occurred during sputter-deposition.  相似文献   

7.
The effect of cobalt on bainite kinetics formation in a 1C-1.5Si wt pct steel is investigated. Two laboratory casts were manufactured with no or 2.5Co wt pct. Bainite transformation kinetics at 493 K, 523 K, and 573 K (220 °C, 250 °C, and 300 °C) were measured using dilatometry. Careful control of the alloy composition, in particular with respect to carbon content, allowed unambiguous identification of the expected accelerating effect of Co. This effect was quantified and compared to that of other possible alloying additions. It is shown that Co has an acceleration effect of around 18 to 29 pct (per wt pct added) for bainite formation between 220 °C and 300 °C. Comparison with published data indicates that this influence is orders of magnitude smaller than that achieved through reduction of C, Mn, or Cr. The influence on hardness is quantified and shown to be significant, and possible origins for hardening are discussed.  相似文献   

8.
A combined 3.5 wt pct Mo + 1.2 wt pct Ti imparted dynamic recrystallization in a 35 wt pct Fe-45 wt pct Ni-20 wt pct Cr alloy system during creep at 700 °C, whereas 3.5 wt pct Mo addition alone did not initiate recrystallization. Dynamic recrystallization substantially increased the creep elongation and produced a high ductile fracture topography in the present alloy system. A subgrain coalescence nucleation mechanism for dynamic recrystallization mechanism was operative during creep. The critical initiation strain requirements are also discussed.  相似文献   

9.
The effect of austenitizing or tempering temperature on the corrosion fatigue properties of 13 pct chromium stainless steel was studied. Three pct NaCI aqueous solution was used as the corrosive environment, and the results were compared with the atmospheric fatigue properties. Strong influence of the tempering temperature on the S-N and FCP behavior of this blading material was found. The damage ratios (corrosion fatigue limit divided by endurance limit) of these various heat treated specimens became very low by this environment. Especially, extremely low corrosion fatigue strength of the specimen tempered at 600 °C was noticed. This microstructure was strategically used to clarify the reduction of pH inside the corrosion pits which were generally formed at the fatigue crack initiation sites. FCP data in the corrosive environment showed higher resistance than the atmospheric ones at the stress intensities below 18 MPa · m1/2, and which is opposite to the generally known influence of the corrosive environments. As for the fractographic feature, an appearance of the intergranular facets was especially noticed in NaCI aqueous solution environment. The fraction of this intergranular cracking was obtained as a function of the stress intensity factor.  相似文献   

10.
Induction melting and electron beam melting techniques were employed in the production of unidirectionally solidified eutectic composites of Ti-1.7 wt pct B and Ti-8.5 wt pct Si. The grown eutectics were reinforced by 7.7 volume pct of TiB fibers and 31 volume pct of Ti5Si3 fibers respectively. Controlled dendritic solidification of a hypereutectic composition of Ti-12 wt pct Si was also accomplished. Tensile, compressive, creep, and stress rupture specimens were cut from the eutectic composites and tested with reinforcing fibers parallel to the load axis. Ti?TiB eutectic was found to have less than the critical volume fraction of fibers necessary for reinforcement, while Ti?Ti5Si3 composite attained a compressive yield strength of 275,000 psi and a compressive Young's modulus of 30×108 psi after heat treatment. The 500 and 4000 hr stress rupture properties of Ti?Si eutectic were superior to commercial titanium alloys at 1000° and 1200°F. The minimum creep rate of Ti?Ti5Si3 eutectic composite was lower than all other titanium alloys at 1000°F. Tensile, compressive, and creep properties of the Ti-8.5 wt pct Si eutectic are discussed in terms of the current theories of composite behavior.  相似文献   

11.
Different thermomechanical treatments were applied to a high strength low carbon steel with a novel chemical composition. As a result, three different microstructures were produced with dissimilar mechanical and corrosion properties. Subsequently, a tempering heat treatment was applied to redistribute the phases in the steel. Microstructure A with 56 pct martensite and 32 pct bainite presented high strength but medium ductility; microstructure C with 95 pct ferrite and 3 pct martensite/austenite resulted in low strength and high ductility, and finally microstructure B with 98 pct bainite and 2 pct martensite/austenite resulted in high strength and ductility. Alternatively the corrosion behavior obtained by polarization curves was characterized in 0.1 M H2SO4, 3 M H2SO4, 3.5 wt pct NaCl, and NS4 solutions resulting in similar magnitudes, while the corrosion behavior acquired by electrochemical impedance spectroscopy had slightly differences in 3 M H2SO4.  相似文献   

12.
13.
The role of chromium, carbon, chromium carbides, and phosphorus on the intergranular stress corrosion cracking (IGSCC) resistance of Ni-Cr-Fe alloys in 50 pct NaOH at 140 °C is studied using controlled-purity alloys. The effect of carbon is studied using heats in which the carbon level is varied between 0.002 and 0.063 wt pct while the Cr level is fixed at 16.8 wt pct. The effect of Cr is studied using alloys with Cr concentrations between 5 and 30 wt pct. The effect of grain boundary Cr and C together is studied by heat-treating the nominal alloy composition of Ni-16Cr-9Fe-0.035C, and the effect of P is studied using a high-purity, P-doped alloy and a carbon-containing, P-doped alloy. Constant extension rate tensile (CERT) results show that the crack depth increases with decreasing alloy Cr content and increasing alloy C content. Crack- ing severity also correlates inversely with thermal treatment time at 700 °C, during which the grain boundary Cr content rises and the grain boundary C content falls. Phosphorus is found to have a slightly beneficial effect on IG cracking susceptibility. Potentiodynamic polarization and potentiostatic current decay experiments confirm that Cr depletion or grain boundary C enhances the dissolution at the grain boundary. Results support a film rupture-anodic dissolution model in which Cr depletion or grain boundary C (independently or additively) enhances dissolution of nickel from the grain boundary region and leads to increased IG cracking.  相似文献   

14.
The article reports the creep behavior, at 565 °C, of 1Cr1Mo0.75V (Ti, B) (Durehete D1055) steel, in each of two grain sizes and doped with individual trace elements such as P, As, and Sn, in comparison to a reference cast of the base material containing 0.08 wt pct Ti. The addition of the trace elements P, As, or Sn (each <0.045 wt pct) appears to produce no significant effect on creep strength or creep crack-growth resistance at 565 °C. The fine-grained material shows low creep strength but notch strengthening, while the coarse-grained material shows higher creep strength and exhibits notch weakening for test times up to 2750 hours. From creep crack-growth tests, it appears that the C* parameter is not appropriate for correlating the creep crack-growth rate under the present test conditions. The parameters K I or σ net are found to correlate better, but, from the present data, it is not possible to judge which of these parameters is more appropriate for general use. It is suggested that the presence of Ti in CrMoV steels has an inhibiting effect on trace-element embrittlement.  相似文献   

15.
The technology of obtaining titanium carbide powders by reduction-carbidization of titanium dioxide with calcium hydride and carbide at temperatures up to 1200°C is developed. The dispersity of the TiC particles is determined by thermal desorption and scanning electron microscopy: the average size of crystals is no larger than 1 μm. It is revealed by the methods of coulometry and energy dispersive spectrometry that calcium-hydride titanium carbide is characterized by a high content of bound carbon and a low content (0.01–0.03 wt %) of free carbon. It is established by X-ray structural analysis and transmission electron microscopy that TiC particles are uniform (their composition is close to stoichiometric TiC1.0) and are single crystals. The investigation of the structure and properties of hard alloys of the compositions 60% TiC + 29.6% Ni + 10.4% Mo and 72% TiC + 18.3% Ni and 9.7% Mo, which were obtained on the basis of calcium-hydride titanium carbide powders, showed that they completely satisfy the requirements to tungsten-free hard alloys.  相似文献   

16.
The effect of the addition of 5 at. pct boron on the microstructure and creep behavior of a nominally Ti-22Al-26Nb (at. pct) alloy was investigated. The boron-modified alloy contained boride needles enriched in titanium and niobium, and because to these borides, this material was considered to be a discontinuously reinforced metal matrix composite. These needle-shaped borides made up to 2 pct of the volume and were up to 158-μm long and 22-μm wide. The effect of boron on the mechanical properties was evaluated through in-situ creep testing and tensile testing at room temperature (RT) and 650 °C. Overall, the addition of 5 at. pct boron proved to be detrimental to the tensile and creep behavior. The composite exhibited a brittle failure and lower elongations-to-failure than the monolithic material. The in-situ tensile and creep experiments revealed that the deformation process initiated in the boride needles, which cracked extensively, and significantly greater primary creep strains and creep rates were exhibited by the composite.
C.J. Cowen (Graduate Assistant)Email:
  相似文献   

17.
The influence of composition on the tensile and creep strength of [001] oriented nickel-base superalloy single crystals at temperatures near 1000 °C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247.* For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta plus W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels ofγ′ volume fraction,γ-γ′ lattice mismatch, and solid solution hardening.  相似文献   

18.
The effects of dilute additions of titanium up to 0.20 wt pct on the solubility of nitrogen in two complex Fe−Cr−Ni alloys were examined over the temperature range 1450 to 1600°C. Sieverts' law was obeyed by all titanium-bearing alloys up to some nitrogen pressure below one atmosphere. ‘Breaks’ in each solubility plot were observed that corresponded to the formation of titanium nitride. Titanium additions were observed to lower the nitrogen solubility in each group of alloys. This effect is opposite to that previously observed in pure iron. Calculated values of the solubility product (pct Ti) (pct N) for TiN formation in each alloy increased with rising melt temperature.  相似文献   

19.
Stainless steel samples doped with various contents of Sb were crept under the same conditions. With respect to the base material, a low content of Sb (0.1 wt pct or 0.2 wt pct) is found to improve creep strength and creep ductility of the alloys whereas the addition of 1 wt pct Sb decreases the mechanical properties. The microstructure of the samples was examined quantitatively by scanning electron microscopy. The improvement of mechanical properties is attributed to a reduction of the nucleation rate and of the growth rate of cavities. In order to predict the strain to fracture, a criterion on the fraction of grain boundary area cavitated is proposed.  相似文献   

20.
The effect of tungsten on creep behavior and microstructural evolution was investigated for tempered martensitic 9Cr steels with various W concentrations from 0 to 4 wt pct. The creep rupture testing was carried out at 823, 873, and 923 K for up to 54 Ms (15,000 hours). The creep and creep rupture strength increased linearly with W concentration up to about 3 wt pct, where the steels consisted of the single constituent of the tempered martensite. It increased only slightly above 3 wt pct, where the matrix consisted of the tempered martensite and δ-ferrite. The minimum creep rate was described by a power law. The apparent activation energy for the minimum creep rate showed a tendency similar to the W concentration dependence of the creep-rupture strength and was larger than the activation energy for self-diffusion at high W concentrations above 1 wt pct. The martensite lath microstructure with fine carbides along lath boundaries was responsible for a high resistance to creep deformation. With increasing W con- centration, the martensite lath microstructure became stabilized, which decreased the minimum creep rate and increased the apparent activation energy for the minimum creep rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号