首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction rates, linolenate/linoleate reaction selectivity,trans formation, and conjugated diene formation were determined for mixed commerical catalysts containing 0.5, 1, 2, 10, and 20 parts nickel catalyst (25% nickel) per 1000 parts copper chromite catalyst (ppt) and at catalyst concentrations in the oil of 1.0, 0.5, and 0.25%. The rate of hydrogenation increased as the amount of nickel increased. Addition of 0.5, 1, and 2 ppt nickel catalyst to copper chomite catalyst resulted in a small decrease in selectivity compared with straight copper chromite. When soybean oil was hydrogenated with these mixed catalysts sufficiently to reduce linolenate to 0, iodine values were 102–108 compared to 109–112 for straight copper chromite and to less than 80 for straight nickel. Presented at the AOCS Meeting, New Orleans April 1973. ARS, USDA.  相似文献   

2.
Selective hydrogenation of soybean oil to reduce linolenic acid is accomplished better with copper than with nickel catalysts. However, the low activity of copper catalysts at low pressure and the high cost of batch equipment for high-pressure hydrogenation has precluded their commercial use so far. To evaluate continuous systems as an alternative, soybean oil was hydrogenated in a 120 ft × 1/8 in. tubular reactor with copper catalyst. A series of hydrogenations were performed according to a statistical design by varying processing conditions: oil flow (0.5 L/hr, 1.0 L/hr and 2.0 L/hr), reaction temperature (180 C and 200 C), hydrogen pressure (1,100 psig and 4,500 psig) and catalyst concentration (0.5% and 1.0%). An iodine value (IV) drop of 8–43 units was observed in the products whereas selectivity varied between 7 and 9. Isomerization was comparable to that observed with a batch reactor. Analysis of variance for isomerization indicated interaction between catalyst concentration and hydrogen pressure and between catalyst concentration and temperature. The influence of pressure on linolenate selectivity was different for different temperatures and pressure. Hydrogenation rate was significantly affected by pressure, temperature and catalyst concentration.  相似文献   

3.
Hydrogenation characteristics of a wide variety of stationary catalysts were studied with an aim to explore their possible use in the continuous hydrogenation of fats. Refined soybean oil was hydrogenated continuously in a vertical flow-through reactor over a fixed bed of catalyst. Catalysts investigated were pelleted products containing Raney nickel, reduced nickel, reduced palladium, and copper chromite, as well as granulated alloys of the Raney type, such as Ni-Al, Cu-Al, Pd-Al, and Cu-Cr-Al, which were activated with alkali. These catalysts offered a wide choice of activity, selectivity, and ability to form geometrical isomers. Pelleted copper chromite and granular Raney copper-chromium were found to be highly selective toward the linolenate moiety of soybean oil, whereas pelleted palladium on carrier, as well as granular Raney nickel, Raney copper, and Raney palladium, though moderately selective, exhibited very high activity even at relatively low temperatures. A unique feature of most of the stationary catalysts was the remarkably high rate of hydrogenation. With most catalysts, the iodine value of soybean oil was reduced by 40–60 units within a reaction period of 2–4 min. The hydrogenated fat was practically free of catalyst particles.  相似文献   

4.
The green color in a refined bleached soybean oil extracted from green soybeans was removed substantially by partially hydrogenating the oil with 1% copper chromite catalyst at 175 C and 30 psig. Hydrogenating the same oil to the identical IV (110) with 0.1% nickel at 150 C and 15 psig was ineffective.  相似文献   

5.
In previous work we found that ultrasonic energy greatly enhanced the rate of hydrogenation of soybean oil. We have now investigated parameters of ultrasonic hydrogenation and the quality of the resulting products. Refined and bleached soybean oil was hydrogenated continuously with and without ultrasonic energy at different temperatures, pressures and catalyst concentrations. Flavor and oxidative stability of the oils were compared with a commercially hydrogenated soybean oil. The extent of hydrogenation (ΔIV) was not affected by temperature between 245 and 290 C, but was greater at 106 psig than at 65 psig hydrogen pressure. The ΔIV of hydrogenated oils increased linearly with catalyst concentration from 40 ppm to 150 ppm nickel. At the same catalyst concentration the IV drop was significantly increased when ultrasonic energy was used. By reducing the amount of power supplied to the ultrasonic reactor to 40% of full power, the specific power (watts/ΔIV) was lowered by 60%. Linolenate selectivities and specific isomerization (%trans/ΔIV) remained the same, but linoleate selectivities were lower than for batch hydrogenation under varied operating parameters. Flavor scores were not significantly different, initially or after storage eight days at 60 C, for oils continuously hydrogenated with and without ultrasonic energy. Hydrogenation of soybean oil with ultrasonic energy offers a method to produce good quality products at potentially lower cost than present methods.  相似文献   

6.
Many investigators associate the poor keeping properties of soybean oil with its linolenic acid content. On the other hand the high linoleic acid content is a desired property from a nutritional point of view. We have therefore developed a process for the preferential reduction of the linolenic acid content by selective hydrogenation. Conventional catalysts for the hydrogenation of fats have a rather low selectivity in this respect. When linolenic acid in soybean oil is hardened (e.g., with a nickel catalyst), most of the linoleic acid is converted into less unsaturated acids. It was found that linolenic acid is hydrogenated much more preferentially in the presence of copper catalysts than in that of nickel and other hydrogenation catalysts. At a linolenic acid content of 2%, soybean oil hardened with nickel catalyst contained about 28% linoleic acid, whereas with copper catalyst the hardened soybean oil contained 49% linoleic acid. By means of our process it is possible to manufacture a good keepable oil of, e.g., I.V. 115 and containing 1% linolenic acid and 46% linoleic acid. The storage stability of this product is comparable with that of sunflower-seed oil. A liquid phase yield of 86% is obtained after winterization at 5C for 18 hr. The high selectivity for linolenate reduction of copper catalysts must be ascribed to the copper part of the catalyst. Investigations into the structure of the catalyst indicate that the active center consists of copper metal crystallites; whether these centers are promoted by the carrier or traces of other substances is under investigation.  相似文献   

7.
Continuous hydrogenation of fats and fatty acids using suspended catalysts was studied in a vertical flow reactor packed with Raschig rings. A short time of reactive contact of the fat or the fatty acid with the catalyst and hydrogen is the unique feature of this system. A nickel catalyst used in the hydrogenation of soybean oil gave a reduction of 40-50 iodine value units per min, small amounts oftrans-isorners (10-20%), large proportions of linoleate in unreduced octadecadienoyl moieties (70-80%), and nonselective reduction of polyunsaturated acyl moieties (linoleate selectivity ratio 1-3). Another nickel catalyst, used in the hydrogenation of tallow fatty acids, also gave a reduction of 40-50 iodine value units per min and nonselective reduction of polyunsaturated fatty acids. A copper chromite catalyst used in the hydrogenation of soybean oil gave a reduction of 10-15 iodine value units per min, low levels oftrans- isomers (10-15%), and selective reduction of linolenoyl moieties (linolenate selectivity ratio 4-6). Composition of positional isomers of cis- andtrans-octadecenoyl moieties in partially hydrogenated products obtained both with nickel and copper chromite catalysts reveals that essentially the same mechanisms of isomerization are involved in continuous hydrogenation at short time of reactive contact as in batch hydrogenation. 1The terms “linoloyl” and “linolenoyl” are used throughout to designate9-cis, 12-cis-octadecadienoyl and 9-cis, 12-cis, 15-cis- octadecatrienoyl groups, respectively.  相似文献   

8.
Soybean oil was partially hydrogenated with copper-chromite catalyst at 170 C and up to 30,000 psig hydrogen pressure. Catalyst activity increased with increase in pressure up to 15,000 psig. The linolenate selectivity (SLn) of the reaction remained essentially unchanged over 50–1000 psig pressure range. A SLn of 5.5 to 5.6 was achieved at 15,000 to 30,000 psig pressure range. This value is somewhat lower than the selectivity at 50–1000 psig, but much higher than that obtained with nickel catalysts. Geometric isomerization increased as pressure increased up to 200 psig; above this pressure, the percenttrans remained the same up to 500 psig.trans Isomer content decreased when the pressure was increased to 30,000 psig. cis,trans Isomerization of linoleate was greater at 1000 psig and 15,000 psig than at 50 psig. At 15,000 psig, part of the linoleate in soybean oil was hydrogenated directly without prior conjugation, whereas at low pressures, all of the double bonds first conjugate prior to hydrogenation. This difference in mechanism might explain the lower selectivities obtained at high pressures. Conjugated diene isomers were found in the products up to 200 psig. Above this pressure conjugated diene was not measurable. No significant differences were found in the double bond distribution oftrans monoenes even though the amount oftrans monoene formed decreased as pressure was increased to 30,000 psig. 1 Presented at the AOCS meeting, San Francisco, May 1979.  相似文献   

9.
Soybean oil hydrogenated in the presence of copper-chromite catalysts to 3% linolenate and below requires winterization if it is to pass the cold test. Yields of winterized oil from soybean oil hydrogenated to several linolenate levels were therefore studied. Partially hydrogenated soybean oil was sampled and filtered at intervals during hydrogenation on a pilot plant scale with a commercial copper-chromite catalyst. Samples were then vacuum bleached and filtered to remove dissolved copper, held at 7 C for 48 hr and filtered to remove stearines. The filtered winter oils passed the standard 5.5 hr cold test. For soybean oil in which linolenate was reduced to 0.1% with a commercial copper-chromite catalyst or to 3.0% with a nickel catalyst yields of winter oil were about the same; 92% for a 5.5 hr cold test oil (winterized two days at 7 C) and 89% for a 20 hr cold test oil (winterized two days at 4 C). Presented at the AOCS Meeting, San Francisco, April 1969. No. Market. Nutr. Res. Div. ARS, USDA.  相似文献   

10.
Addition of triethyl silane to copper stearate resulted in an active heterogenous catalyst for the hydrogenation of soybean oil. The linolenate selectivity of this catalyst (KLe/KLo=2.4 to 3.9) was much lower than that obtained with copper chromite (8.4). Unlike copper-chromite catalyst, triethyl silane-activated copper formed stearate during hydrogenation. Both silica and alumina increased catalyst activity. Linolenate selectivity improved slightly in the presence of alumina.  相似文献   

11.
Continuous hydrogenation of soybean oil with a stationary copper catalyst bed was performed at 110–180 C, 30–75 psig hydrogen and Iiquid hourly spaced velocities (LHSV) of 0.25–0.6 cc/hr/cc catalyst. In contrast to batch, continuous hydrogenation was achieved at a lower temperature with no need to postfilter the product. The soybean oil products from the continuous and batch processes hydrogenated to 0% triene were similar in fatty acid composition,trans content of 29% and linolenate selectivity of 5. Biometrician, North Central Region, Agricultural Research Service, U.S. Department of Agriculture, stationed at the Northern Regional Research Center, Peoria, IL 61604.  相似文献   

12.
A laboratory-scale, high-pressure, continuous reactor was used to partially hydrogenate soybean oil with copper catalysts. Effects of pressure on the kinetics of the reaction were studied by conducting experiments in a central composite design. The interaction of pressure (75\s-200 psig) with the other independent variables of temperature (155\s-255 C) and copper concentration (0.15\s-1.85%) was evaluated. Dependent variables studied were linolenate selectivity and formation of trans isomers and conjugated dienes. in addition, effects of pressure up to 500 psig, use of experimental and commercial copper catalysts and comparison of continuous with high-pressure batch rections were investigated. Linolenate selectivity (8\s-10) and trans-isomer formation were not significantly affected by any of the independent variables. Conjugated dienes were eliminated as products of the reaction when pressure was above 200 psig. Experimental copper-silica catalyst gave a 1.6-fold increase in reaction rate over commercial copper catalysts. Presented at ISF-AOCS meeting, New York, April 1980.  相似文献   

13.
In pilot-plant tests, the linolenate content of soybean oil was reduced to less than 1% without increasing the saturates, by hydrogenation to an IV of about 115 with an active copper-chromite catalyst. The linolenate-linoleate selectivity ratio (KLe/KLo) was from 9 to 12. Several commercial copper-chromite catalysts were used in hydrogenation tests. The activities of four of five commercial catalysts tested were improved to various degrees by heating in air at 350 C (one was inactive both before and after heating). Examination by differential thermal analysis (DTA) of each catalyst, just as received and then after being heated at 350 C, demonstrated that heating greatly diminished or removed peak areas from the DTA curve. Studies made with one commerical copper-chromium-barium catalyst showed that heating the catalyst was also necessary to gain maximum linolenate-linoleate selectivity in hydrogenating soybean oil. Presented at the AOCS Meeting, New Orleans, May 1967. No. Utiliz. Res. Dev. Div., ARS, USDA.  相似文献   

14.
High oleic (monoene) oils were obtained from soybean oil by selective hydrogenation with copper catalysts. A mixture of nickel and copper chromite catalyst had activity suitable for producing the high monoene oils. A new catalyst (copper-on-Cab-O-Sil) prepared in the Laboratory was more active than commercial copper catalysts. Hydrogenated oils contained 61–72% monoenoic and 14–24% dienoic acids, and there was essentially no increase in stearic acid. Thetrans-isomer content of these oils varied between 17% to 32%. Double bonds in the monoene were distributed along the molecule from C6 to C15, but were located preferentially in the C9 position for thecis-monoene and in the C10 and C11 positions for thetrans-monoene. When the iodine value of these high monoene oils was about 90–95, they remained liquid above 28 C. Citric acid treatment reduced the copper content of hydrogenated oils to a level that was comparable to that of the original soybean oil. Presented at the AOCS Meeting, Chicago, October 1967. Food and Agricultural Organization representative from Rumania. No. Utiliz. Res. Dev. Div., ARS, USDA.  相似文献   

15.
New polymer-bound hydrogenation catalysts were made by complexing PdCl2, RhCl3·3H2O, or NiCl2 with anthranilic acid anchored to chloromethylated polystyrene. The Pd(II) and Ni(II) polymers were reduced to the corresponding Pd(O) and Ni(O) catalysts with NaBH4. In the hydrogenation of methyl sorbate, these polymer catalysts were highly selective for the formation of methyl 2-hexenoate. The diene to monoene selectivity decreased in the order: Pd(II), Pd(O), Rh(I), Ni(II), Ni(O). Kinetic studies support 1,2-reduction of the Δ4 double bond of sorbate as the main path of hydrogenation. In the hydrogenation of soybean esters, the Pd(II) polymer catalysts proved superior because they were more active than the Ni(II) polymers and produced lesstrans unsaturation than the Rh(I) polymers. Hydrogenation with Pd(II) polymers at 50~100 C and 50 to 100 psi H2 decreased the linolenate content below 3% and increasedtrans unsaturation to 10~26%. The linolenate to linoleate selectivity ranged from 1.6 to 3.2. Reaction parameters were analyzed statistically to optimize hydrogenation. Recycling through 2 or 3 hydrogenations of soybean esters was demonstrated with the Pd(II) polymers. In comparison with commercial Pd-on-alumina, the Pd(II) polymers were less active and as selective in the hydrogenation of soybean esters but more selective in the hydrogenation of methyl sorbate. Presented at ISF-AOCS Meeting, New York, April 1980.  相似文献   

16.
Soybean oil was partially hydrogenated in a continuous system with copper and nickel catalysts. The hydrogenated products were evaluated for flavor and oxidative stability. Processing conditions were varied to produce oils of linolenate contents between 0.4 and 2.7%, as follows: oil flow, 0.6–2.2 liters/hr; reaction temperature, 180–220 C; hydrogen pressure, 100–525 psig, and catalyst concentration, 0.5–1% copper catalyst or 0.1% nickel catalyst.Trans unsaturation varied from 8 to 20% with copper catalyst and from 15.0 to 27% with nickel catalyst. Linolenate selectivity was 9 with copper catalyst and 2 with nickel catalyst. Flavor evaluation of finished oils containing 0.01% citric acid (CA), appraised initially and after accelerated storage at 60 C, showed no significant difference between hydrogenated oils and nonhydrogenated oil. However, peroxide values and oxidative stability showed that hydrogenated oils were more stable than the unhydrogenated oil. CA+TBHQ (tertiary butylhydroquinone) significantly improved the oxidative stability of test oils over oils with CA only, but flavor scores showed no improvement. Dimethylpolysiloxane (MS) had no effect on either flavor or oxidative stability of the oils.  相似文献   

17.
The use of Cr(CO)6 was investigated to convert polyunsaturated fats intocis unsaturated products. With methyl sorbate, the same order of selectivity for the formation ofcis-3-hexenoate was demonstrated for Cr(CO)6 as for the arene-Cr(CO)3 complexes. With conjugated fatty esters, the stereoselectivity of Cr(CO)6 toward thetrans, trans diene system was particularly high in acetone. However, this solvent was not suitable at elevated temperatures required to hydrogenatecis, trans- andcis, cis-conjugated dienes (175 C) and nonconjugated soybean oil (200 C). Reaction parameters were analyzed statistically to optimize hydrogenation of methyl sorbate and soybean oil. To achieve acceptable oxidative stability, it is necessary to reduce the linolenate constituent of soybean oil below 1–3%. When this is done commercially with conventional heterogenous catalysts, the hydrogenated products contain more than 15%trans unsaturation. By hydrogenating soybean oil with Cr(CO)6 (200 C, 500 psi H2, 1% catalyst in hexane solution), the product contains less than 3% each of linolenate andtrans unsaturation. Recycling of Cr(CO)6 catalyst by sublimation was carried through three hydrogenations of soybean oil, but, about 10% of the chromium was lost in each cycle by decomposition. The hydrogenation mechanism of Cr(CO)6 is compared with that of arene-Cr(CO)3 complexes. Presented in part at Seventh Conference on Catalysis in Organic Syntheses, Chicago, Illinois, June 5–7, 1978.  相似文献   

18.
Hydrogenation of linseed and soybean methyl esters was achieved at 100–180C, 100–1000 psi H2 and 0.05–0.25 moles catalyst per mole of ester. The relative activity of metal acetylacetonates in decreasing order was: nickel (III), cobalt (III), copper (II) and iron (III). Reduction occurred readily in methanol solution but only slowly in dimethylformamide and acetic acid. No reduction occurred in the absence of solvents. Soybean oil was also hydrogenated rapidly with nickel (III) acetylacetonate in methanol, but in this system the triglycerides were converted to methyl esters. Nickel (III) acetylacetonate was the most selective catalyst toward linolenate hydrogenation. Methyl linoleate and linolenate hydrogenated with nickel(III) acetylacetonate were fractionated into monoenes, dienes and trienes. Thecis monoenes separated in 62 to 68% yield had double bonds in the original position. The remainingtrans monoenes had extensively scattered unsaturation. The dienes and trienes showed no conjugation, but some of the double bonds in the dienes were not conjugatable with alkali. Little stearate was formed. Presented at AOCS meeting in Chicago, 1964 No. Util. Res. and Dev. Div. ARS, USDA  相似文献   

19.
Refined and bleached soybean oil was hydrogenated with and without ultrasonic energy in a batch system. Reactions were carried out at 170°C with 0.02% nickel catalyst (Nysel, Harshaw/Filtron Partnership, Cleveland, OH) or 50 ppm nickel in the oil. Hydrogen pressure was varied from 15 to 90 psig. After 20 min, the average reaction rate was about five times faster in the presence of ultrasonic energy. Hydrogenation rate generally increased with increasing hydrogen pressure when ultrasonic energy was applied. However, the increasing rate is more sinusoidal in nature than linear.  相似文献   

20.
Phase composition of a copper on silica gel catalyst was studied with X-ray diffraction analysis. Activity measurements showed three periods of activity, the first two of which were ascribed to a copper surface subjected to reduction and the third one to the reduced form of the catalyst. Hydrogenation reaction over Cu/SiO2 catalyst has a complex pressure dependence with a rate maximum at 6 atm in the low pressure range. Preparation of the catalyst was studied. On the basis of a proposed reaction model, a catalyst mixture was prepared and tested with good results. In rapeseed oil hydrogenation, Cu/SiO2 catalysts were shown to be superior to copper chromite catalysts. In soybean oil the two types of catalyst were rather equivalent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号