首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mechanisms of tempered martensite embrittlement in low alloy steels   总被引:1,自引:0,他引:1  
An investigation into the mechanisms of tempered martensite embrittlement (TME), also know as “500°F” or “350°C” or one-step temper embrittlement, has been made in commercial, ultra-high strength 4340 and Si-modified 4340 (300-M) alloy steels, with particular focus given to the role of interlath films of retained austenite. Studies were performed on the variation of i) strength and toughness, and ii) the morphology, volume fraction and thermal and mechanical stability of retained austenite, as a function of tempering temperature, following oil-quenching, isothermal holding, and continuous air cooling from the austenitizing temperature. TME was observed as a decrease in bothK Ic and Charpy V-notch impact energy after tempering around 300°C in 4340 and 425°C in 300-M, where the mechanisms of fracture were either interlath cleavage or largely transgranular cleavage. The embrittlement was found to be concurrent with the interlath precipitation of cementite during temperingand the consequent mechanical instability of interlath films of retained austenite during subsequent loading. The role of silicon in 300-M was seen to retard these processes and hence retard TME to higher tempering temperatures than for 4340. The magnitude of the embrittlement was found to be significantly greater in microstructures containing increasing volume fractions of retained austenite. Specifically, in 300-M the decrease inK Ic, due to TME, was a 5 MPa√m in oil quenched structures with less than 4 pct austenite, compared to a massive decrease of 70 MPa√m in slowly (air) cooled structures containing 25 pct austenite. A complete mechanism of tempered martensite embrittlement is proposed involving i) precipitation of interlath cementite due to partial thermal decomposition of interlath films of retained austenite, and ii) subsequent deformation-induced transformation on loading of remaining interlath austenite, destabilized by carbon depletion from carbide precipitation. The deterioration in toughness, associated with TME, is therefore ascribed to the embrittling effect of i) interlath cementite precipitates and ii) an interlath layer of mechanically-transformed austenite,i.e., untempered martensite. The presence of residual impurity elements in prior austenite grain boundaries, having segregated there during austenitization, may accentuate this process by providing an alternative weak path for fracture. The relative importance of these effects is discussed. Formerly with the Lawrence Berkeley Laboratory, University of California.  相似文献   

2.
Electron microscopy, diffraction and microanalysis, X-ray diffraction, and auger spectroscopy have been used to study quenched and quenched and tempered 0.3 pct carbon low alloy steels. Some in situ fracture studies were also carried out in a high voltage electron microscope. Tempered martensite embrittlement (TME) is shown to arise primarily as a microstructural constraint associated with decomposition of interlath retained austenite into M3C films upon tempering in the range of 250 °C to 400 °C. In addition, intralath Widmanstätten Fe3C forms from epsilon carbide. The fracture is transgranular with respect to prior austenite. The situation is analogous to that in upper bainite. This TME failure is different from temper embrittlement (TE) which occurs at higher tempering temperatures (approximately 500 °C), and is not a microstructural effect but rather due to impurity segregation (principally sulfur in the present work) to prior austenite grain boundaries leading to intergranular fracture along those boundaries. Both failures can occur in the same steels, depending on the tempering conditions.  相似文献   

3.
Retained austenite and tempered martensite embrittlement   总被引:4,自引:0,他引:4  
The problems of detecting the distribution of small amounts (5 pct or less) of retained austenite films around the martensite in quenched and tempered experimental medium carbon Fe/c/x steels are discussed and electron optical methods of analysis are emphasized. These retained austenite films if stable seem to be beneficial to fracture toughness. It has been found that thermal instability of retained austenite on tempering produces an embrittlement due to its decomposition to interlath films of M3C carbides. The fractures are thus intergranular with respect to martensite but transgranular with respect to the prior austenite. The temperature at which this occurs depends upon alloy content. The effect is not found in Fe/Mo/C for which no retained austenite is detected after quenching, but is present in all other alloys investigated.  相似文献   

4.
The isothermal and nonisothermal tempering of martensite in dual-phase (DP) steels was investigated mainly by analytical transmission electron microscopy, and the effect on softening behavior was studied. The isothermal tempering resulted in coarsening and spheroidization of cementite and complete recovery of laths. However, nonisothermal tempering manifested fine quasi-spherical intralath and platelike interlath cementite, decomposition of retained austenite, and partial recovery of laths. The distinct characteristic of nonisothermal tempering was primarily attributed to the synergistic effect of delay in cementite precipitation and insufficient time for diffusion of carbon due to rapid heating that delays the third stage of tempering. The finer size and platelike morphology of cementite coupled with partial recovery of lath resulted in reduced softening in nonisothermal tempering compared to severe softening in isothermal tempering due to large spheroidized cementite and complete recovery of lath substructure. The substitutional content of precipitated cementite in nonisothermal tempering was correlated to the richness of particular steel chemistry. Softening resistance during nonisothermal tempering was related to DP steel chemistry, i.e., Cr and Mn content. Fine cementite and less decomposed martensite in rich chemistry confer high resistance to softening compared to leaner chemistries, which indicated severe decomposition of martensite with coarser cementite.  相似文献   

5.
The reverse transformation behavior upon heating to intercritical temperature was studied in Fe-0.21C-2.2Mn-1.5Si (wt pct) alloy with three initial microstructures. One is the cold-rolled (CR) structure and two others are martensite having different fractions of retained austenite. The CR structure exhibits slower reverse transformation kinetics than martensite due to the lesser population of potent nucleation sites and coarse cementite particles. The film type of retained austenite at the martensite lath boundary contributes to the earlier start of the reverse transformation, because it can proceed as the growth of pre-existing retained austenite, which makes the nucleation process less critical. Besides, the growth of interlath austenite plays an essential role in the evolution of fine lath-type reverse-transformed microstructure, which was difficult to obtain from similar initial microstructures of martensite having negligible fraction of interlath austenite.  相似文献   

6.
A study of the micro-mechanisms of tempered martensite embrittlement was made on a series of 4340-type steels in which the contents of manganese, silicon, and trace impurities, especially phosphorus and sulfur, were varied. One plain-carbon steel was also examined. The study employed Charpy impact tests and four-point slow-bend tests coupled with an elastic-plastic stress analysis, as well as scanning electron fractography, Auger electron spectroscopy, transmission electron microscopy of extraction replicas, and magnetic measurements of the transformation of retained austenite. The results indicate that in these steels the TME phenomenon is an intergranular embrittlement problem caused by carbide precipitation on prior austenite grain boundaries which are already weakened by segregated phosphorus and sulfur. The transformation of intragranular retained austenite is concluded not to be of primary significance in the TME in these steels, although it may contribute to the magnitude of the TME toughness trough.  相似文献   

7.
Some design guidelines for improving strength-toughness combinations in medium car-bon structural steels are critically reviewed. From this, quaternary alloy development based on Fe/Cr/C steels with Mn or Ni additions for improved properties is described. Transmission electron microscopy and X-ray analysis reveal increasing amounts of retained austenite in these alloys with Mn content up to 2 wt pct and Ni additions at 5 wt pct after quenching from 1100°C. A corresponding improvement in toughness properties is also found. Grain refining results in a further increase in the amount of retained austenite. In addition, the excellent combinations of strength and toughness in these quaternary alloys are attributed to the production of dislocated lath martensite from a homogeneous austenite phase free from undissolved alloy carbides. The question of thermal instability of retained austenite following tempering is considered in detail and it is shown that the decomposition of retained austenite is closely related to the ease of nucleation and growth of cementite. Thus, graphitizing alloying elements such as Ni are beneficial in postponing the decomposition of retained austenite. Formerly with the Lawrence Berkeley Laboratory, Berkeley, CA This paper is based on a presentation made at a symposium on “Precipitation Processes in Structural Steels” held at the annual meeting of the AIME, Denver, Colorado, February 27 to 28, 1978, under the sponsorship of the Ferrous Metal-lurgy Committee of The Metallurgical Society of AIME.  相似文献   

8.
Electron microscopy, diffraction and microanalysis, X-ray diffraction, and auger spectroscopy have been used to study quenched and quenched and tempered 0.3 pct carbon low alloy steels. Somein situ fracture studies were also carried out in a high voltage electron microscope. Tempered martensite embrittlement (TME) is shown to arise primarily as a microstructural constraint associated with decomposition of interlath retained austenite into M3C filMs upon tempering in the range of 250 °C to 400 °C. In addition, intralath Widmanstätten Fe3C forms from epsilon carbide. The fracture is transgranular with respect to prior austenite. The sit11Ation is analogous to that in upper bainite. This TME failure is different from temper embrittlement (TE) which o°Curs at higher tempering temperatures (approximately 500 °C), and is not a microstructural effect but rather due to impurity segregation (principally sulfur in the present work) to prior austenite grain boundaries leading to intergranular fracture along those boundaries. Both failures can o°Cur in the same steels, depending on the tempering conditions.  相似文献   

9.
This study is concerned with a correlation between the microstructure and fracture behavior of two AISI 4340 steels which were vacuum induction melted and then deoxidized with aluminum and titanium additions. This allowed a comparison between microstructures that underwent large increases in grain size and those that did not. When the steels were tempered at 350°C,K Ic and Charpy impact energy plots showed troughs which indicated tempered martensite embrittlement (TME). The TME results of plane strain fracture toughness are interpreted using a simple ductile fracture initiation model based on large strain deformation fields ahead of cracks, suggesting thatK Icscales roughly with the square root of the spacing of cementite particles precipitated during the tempering treatment. The trough in Charpy impact energy is found to coincide well with the amount of intergranular fracture and the effect of segregation of phosphorus on the austenite grain boundaries. In addition, cementite particles are of primary importance in initiating the intergranular cracks and, consequently, reducing the Charpy energy. These findings suggest that TME in the two 4340 steels studied can be explained quantitatively using different fracture models.  相似文献   

10.
The effect of tempering on the mechanical properties and fracture behavior of two 3 pct Co-modified 9 pct Cr steels with 2 and 3 wt pct W was examined. Both steels were ductile in tension tests and tough under impact tests in high-temperature tempered conditions. At T  923 K (650 °C), the addition of 1 wt pct W led to low toughness and pronounced embrittlement. The 9Cr2W steel was tough after low-temperature tempering up to 723 K (450 °C). At 798 K (525 °C), the decomposition of retained austenite induced the formation of discontinuous and continuous films of M23C6 carbides along boundaries in the 9Cr2W and the 9Cr3W steels, respectively, which led to tempered martensite embrittlement (TME). In the 9Cr2W steel, the discontinuous boundary films played a role of crack initiation sites, and the absorption energy was 24 J cm?2. In the 9Cr3W steel, continuous films provided a fracture path along the boundaries of prior austenite grains (PAG) and interlath boundaries in addition that caused the drop of impact energy to 6 J cm?2. Tempering at 1023 K (750 °C) completely eliminated TME by spheroidization and the growth of M23C6 carbides, and both steels exhibited high values of adsorbed energy of ≥230 J cm?2. The addition of 1 wt pct W extended the temperature domain of TME up to 923 K (650 °C) through the formation of W segregations at boundaries that hindered the spheroidization of M23C6 carbides.  相似文献   

11.
In the last years a lot of research was done in the development of TRIP-assisted multiphase steels. Two principal ways were proposed: - controlled cooling during the hot-rolling process to obtain hot-rolled TRIP-assisted multiphase steels and - the combination of intercritical annealing and isothermal holding at bainite formation temperatures during continuous annealing resulting in cold-rolled TRIP-assisted steel products. Unfortunately both proposed thermomechanical methods require a high silicon level to inhibit cementite precipitation in order to avoid a loss of stability for the metastable retained austenite. In addition, due to high silicon levels, red scale surface defects and a moderate hot dip galvanizability appear. In this article, new thermomechanical strategies for the production of high strength low alloyed TRIP-assisted multiphase steels with good hot-dip galvanizability and without red scale defects will be presented. Regarding the thermomechanical path, the stabilization of the retained austenite in the final microstructure can be optimized by the application of the additional step of batch annealing between hot rolling and cold rolling. This additional thermomechanical step activates manganese diffusion in the ferrite matrix and manganese enrichment processes of the cementite. During the step of continuous annealing, the manganese enriched cementite is transformed into stabilization-optimized retained austenite. Regarding the final microstructure, a fine grained ferrite matrix of about 3 μm grain size containing small islands of intragranular and intergranular stabilzation-optimized retained austenite can be obtained.  相似文献   

12.
硅对贝氏体铸钢高应力冲击磨损性能的影响   总被引:4,自引:0,他引:4  
研究了不同硅含量(0.7%-2.4%,质量分数,下同)贝氏体铸钢的抗高应力磨损性能和失效机制。结果表明:高效硅贝氏体铸钢的耐磨性能较低硅钢显提高,其磨损失重约是低硅贝氏体铸钢的1.2,这是因为硅使氏体铸钢在高应力冲击磨损下表现出不同的失效机制。低硅(0.7%)贝氏体铸钢由于韧性低、组织结构粗大及树枝晶的微区成分偏析,故材料抵抗冲击的能力很低,常在表面还未形成强烈变形层(白层)甚至变形层时,就在变形层和材料基体内产生裂纹并扩展,故低硅贝氏体铸钢的失铲方式为变形层和基体剥落机制。而硅含量为1.65-2.4%的高硅贝氏体铸钢,因脆性的渗碳体被韧性的残余奥氏体所代替,钢的韧性显提高,失效方式表现为白层的剥落机制。  相似文献   

13.
The aim of this article is to present the beneficial effect of a reduction of silicon content on coarse-grained heat-affected zone (CGHAZ) toughness. This study was achieved with experi-mental and industrial E355 structural steels. These 0.09 wt pct C steels were Ti-microalloyed with silicon contents ranging from 0.05 to 0.5 wt pct. First, we demonstrate that the CGHAZ toughness is predominantly affected by the volume fraction of retained austenite (γr). Second, we show that the existence of retained austenite pertains only to its carbon enrichment. This enrichment is promoted essentially by an increase of the silicon level due to the retarding action of silicon on the formation of carbides in ferrite as well as in austenite. In the same way, the increase of silicon content slows down the decomposition of retained austenite into pearlite. The reduction of the silicon content of the steel greatly increases the ductility of the CGHAZ through the decrease of the volume fraction of retained austenite. Formerly Graduate Students, Physical Metallurgy Laboratory, University of Lille.  相似文献   

14.
史园园  胡锋 《中国冶金》2015,25(1):21-25
采用不同的热处理工艺研究了残留奥氏体对中碳双相钢冲击韧性的影响。利用金相显微镜、扫描电镜、透射电镜和摆锤式冲击试验机,对不同试样的显微组织与冲击韧性进行观察、检测和分析。试验结果表明:中碳贝氏体钢的冲击性能显著高于Q/P马氏体钢(室温冲击功是57J对应15J,-40℃冲击功是33J对应9J),可能的原因是贝氏体钢中薄膜状残留奥氏体,对裂纹扩展的阻止效应更显著。  相似文献   

15.
The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct noniron metallic elements. Mössbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 °C) than for SAE 4130 steel (~300 °C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 °C) than for carbon steels (100 °C to 200 °C and 200 °C to 350 °C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 °C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 °C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in martensite that contains 0.5 to 1.0 at. pct carbon and in austenite that contains 6 to 7 at. pct carbon. There was no segregation of any substitutional elements.  相似文献   

16.
The scavenging effect of precipitated austenite in a low carbon, commercial Fe-5.5Ni cryogenic alloy was investigated through observation of the dissolution of cementite precipitates during intercritical tempering and study of the associated change in Charpy impact toughness. Cementite precipitates initially located along prior austenite grain boundaries were gradually dissolved into reverted austenite as the intercritical tempering proceeded. The austenite tends to form at or around the carbide particles and may be catalyzed by their presence. The Charpy impact energy is changed through both a decrease in the ductile-brittle transition temperature and an increase in the upper shelf energy. The latter effect is specifically associated with the dissolution of the carbides which act as preferential void nucleation sites in the untempered alloy.  相似文献   

17.
采用高碳和中碳低温贝氏体转变工艺(095C钢为200℃等温10d,030C钢为320℃等温1d)研究了残留奥氏体对微纳结构钢塑韧性的影响,对不同试样的显微组织、各相体积分数、伸长率和冲击韧性进行观察、检测和分析。试验结果表明,中碳钢贝氏体转变的塑韧性明显高于高碳钢贝氏体转变,主要原因是中碳钢贝氏体转变中存在一定的亚微米级薄膜状残留奥氏体,在拉伸或冲击过程中引起的残留奥氏体的塑性变形,使断裂的能量增加,可以显著提高样品的塑韧性。  相似文献   

18.
Heat treatments were utilized in 5Ni and 9Ni steel which resulted in the development of tempered microstructures which contained either no measurable retained austenite (<0.5 pct) or approximately 4 to 5 pct retained austenite as determined by X-ray diffraction. Microstructural observations coupled with the results of tensile testing indicated that the formation of retained austenite correlated with a decrease in carbon content of the matrix. Relative values ofK IC at 77 K were estimated from slow bend precracked Charpy data using both the COD and equivalent energy measurements. In addition, Charpy impact properties at 77 K were determined. In the 9Ni alloy, optimum fracture toughness was achieved in specimens which contained retained austenite. This was attributed to changes in yield and work hardening behavior which accompanied the microstructural changes. In the 5Ni alloy, fracture toughness equivalent to that observed in the 9Ni alloy was developed in grain refined and tempered microstructures containing <0.5 pct retained austenite. A decrease in fracture toughness was observed in grain refined 5Ni specimens containing 3.8 pct retained austenite due to the premature onset of unstable cracking. This was attributed to the transformation of retained austenite to brittle martensite during deformation. It was concluded that the formation of thermally stable retained austenite is beneficial to the fracture toughness of Ni steels at 77 K as a result of austenite gettering carbon from the matrix during tempering. However, it was also concluded that the mechanical stability of the retained austenite is critical in achieving a favorable enhancement of cryogenic fracture toughness properties. Formerly with Union Carbide Corporation, Tarrytown, NY  相似文献   

19.
Development of TRIP aided ferrous alloys is one answer to the demand for weight decrease in the automotive industry. The microstructure of hot rolled and cold rolled TRIP steels is quite complex and the optimisation of such steel products requires a detailed understanding of the mechanisms of phase transformation, during thermomechanical treatment as well as during mechanical testing or metal forming. We present in this paper the results obtained at Irsid concerning the study of austenite stabilisation through bainitic transformation during thermal treatment and its transformation into martensite during mechanical testing. First of all, the characterisation methods are presented. An effort has to be put on this point due to the refinement of the microstructure of TRIP steels, especially the size of austenite and martensite islands. Carbon replicas for the observation by means of transmission electron microscopy (TEM) are used to analyse the morphological features of the microstructure ‐ nature of the constituents, size and shape ‐ and the composition of cementite particles present in the steels. The mean value for this carbon content in retained austenite is deduced from X‐ray diffraction measurements. Then the kinetics of bainitic transformation are discussed as well as cementite precipitation. The typical composition of the steel studied is 0.5 % C, 1.5 % Mn. The use of 0.5 % C steels facilitates the study of bainitic transformation by avoiding the ferrite formation usually occurring in TRIP steels. Cementite nucleation appears at the ferrite/austenite interface without any partitionning of substitutional elements. To satisfy thermodynamic equilibrium at the interface, the silicon content on the cementite side is very low and high on the austenite side. Then, carbon diffusion towards austenite is delayed and, as a consequence, cementite growth is also delayed. As the diffusion kinetics are low at 400 °C, cementite keeps this “non partitioned” composition, even after 3 hours holding. At 500 °C, diffusion kinetics are higher and cementite composition approaches that predicted by equilibrium. Finally, the stability of retained austenite during mechanical testing is studied. Before and after mechanical testing the morphological characteristics of the microstructure (austenite island size and elongation) are analysed by TEM replicas and image analysis. There is a high density of very small austenite islands but they represent only a small fraction of the total retained austenite. These results confirm and quantify the size effect on austenite stabilisation during deformation.  相似文献   

20.
A new type of high strength, high toughness, martensitic steel, based on a newly proposed Quench and Partitioning (Q&P) process, is presented. This high strength martensitic grade is produced by the controlled low temperature partitioning of carbon from as‐quenched martensite laths to retained inter‐lath austenite under conditions where both low temperature transition carbide formation and cementite precipitation are suppressed. The contribution focuses on both the current understanding of the fundamental processes involved and includes a discussion of the technical feasibility of large‐scale industrial production of these steels as sheet products. The Q&P process, which is carried out on steels with a lean composition, should be implemented easily on some current industrial continuous annealing and galvanizing lines. In addition, martensitic Q&P sheet steel is characterized by very favourable combinations of strength, ductility and toughness, which are particularly relevant for high strength anti‐intrusion automotive parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号