首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 209 毫秒
1.
To extract gold and silver from a copper anode slime with about 15% tin in a plant using the traditional pyrometallurgy-electrorefining technique, the recovery is only 90%. The rest of the gold and silver is lost in the slag which contains mainly SnO2, PbO, and Sb2O3 In the present work, a process is developed to recover the gold and silver further. The slag is mixed with NaCl, NaOH and/or Na2CO3, and roasted at 400°C ~ 800°C to obtain calcine containing water soluble salts of tin and antimony. After leaching with water, the residue consisting of PbO, Au, and Ag is sent back to extract gold and silver with current techniques in the plant. Tin and antimony in the liquor are also recovered separately.  相似文献   

2.
Microstructure and Properties of an Advanced Nickel-base PM Superalloy   总被引:1,自引:0,他引:1  
The need for nickel-base powder metallurgy (PM) superalloy turbine discs is becoming increasingly evi dent. With the eventual aim of improving thrust-to-weight ratio of aeroengines for power generation, well integration of significantly high strength, high damage tolerance and high-temperature capability would be reasonably required. An advanced PM superalloy, which was designed for applications up to 815- 8 5 0 ℃, was experimentally investigated. Emphasis was primarily put on microstructure and mechanical properties. The results indicated the measured phases in the sample were composed of γ,γ', MC, and Ma B2. With uniform coarse grain microstruc ture (ASTM 5-6), the sample appeared to exhibit overwhelming superiority over the prior art materials FGH95, FGH96, FGH97 and FGH98. The dominant embodiments consisted of high tensile strength (Rm = 1000 MPa and Rp0.2 800 MPa at 850℃), strong creep resistance (ξp 0.12% at 815 ℃/400 MPa/50 h), and considerable stressrupture life (τ=457.4 h at 815 ℃/450 MPa). The technical practicability of applications up to 815-850 ℃ of this alloy was conclusively proved.  相似文献   

3.
Diffusion coefficients of antimony in α-iron were determined in the temperature range 700 to 900°C using the residual activity method. Specimens were large-grained polycrystals for the higher temperature measurements and single crystals for the low temperature measurements. Above 800°C the data may be represented by the equationD sb(cm2/s) = (440 ± 200) exp [- (270,000 ± 7000)/RT]. The activation energy (reported in J/mole) is approximately equal to that measured for iron self-diffusion in this same temperature range, although the antimony diffusion coefficients are a factor of ten larger than the iron self diffusion coefficients. The potential for strongly coupled vacancy-antimony motions is demonstrated, based on the observed enhancement of iron self diffusion in dilute iron-antimony alloys. Finally molybdenum is shown to have a negligible effect on the diffusion of antimony in α-iron. These results are discussed in relation to the phenomenon of temper brittleness in steels. Embrittlement kinetics in iron-antimony alloys are shown to be consistent with an antimony diffusion controlled segregation mechanism.  相似文献   

4.
The kinetics of domain growth in Ni4Mo in the temperature range of 600 to 850 °C were investigated using transmission electron microscopy. It was found that domain growth in Ni4Mo is analogous to metallurgical grain growth and can be described by the expressionD n =kt, whereD is the average domain size, t is the aging time, k is a constant, and the exponent n is the reciprocal of the slope of the log D vs log t plot. The value of n changed with temperature from 2.0 at 850 and 800 °C to 2.9 at 700 and 600 °C. This change was explained in terms of relative domain orientation effects. The activation energy for domain growth was obtained as 69 Kcal/mole (2.9 × 105 Joules/mole) in the temperature range of 800 to 850 °C and as 92 Kcal/mole (3.85 x 105 Joules/mole) in the temperature range of 600 to 700 °C, which on comparison with available diffusion data established that the growth process was interface-controlled at the higher temperatures and bulk diffusion-controlled at the lower temperatures.  相似文献   

5.
Antimony, segregated to grain boundaries of iron, was found to be five times more effective than sulfur in promoting intergranular fracture of iron when tested in IN H2SO4 at cathodic potentials. A decrease in the ductility of iron accompanied the fracture mode change at increasing cathodic potentials. The effectiveness of antimony relative to sulfur was determined from straining electrode tests on iron and iron + 250 appm antimony alloys heat treated at 800 °C and 600 °C to produce different grain boundary chemical compositions. Grain boundary compositions were determined by Auger Electron Spectroscopy (AES). Similar grain boundary sulfur concentrations of 0.2 monolayers were observed by AES for the iron and iron + 250 appm antimony alloy after an anneal of 240 hours at 600 °C, while 0.08 monolayers of antimony was observed for the iron + 250 appm antimony alloy. These results suggest that sulfur and antimony do not compete for grain boundary sites.  相似文献   

6.
Diffusion coefficients of antimony in α-iron were determined in the temperature range 700 to 900°C using the residual activity method. Specimens were large-grained polycrystals for the higher temperature measurements and single crystals for the low temperature measurements. Above 800°C the data may be represented by the equationD sb(cm2/s) = (440 ± 200) exp [- (270,000 ± 7000)/RT]. The activation energy (reported in J/mole) is approximately equal to that measured for iron self-diffusion in this same temperature range, although the antimony diffusion coefficients are a factor of ten larger than the iron self diffusion coefficients. The potential for strongly coupled vacancy-antimony motions is demonstrated, based on the observed enhancement of iron self diffusion in dilute iron-antimony alloys. Finally molybdenum is shown to have a negligible effect on the diffusion of antimony in α-iron. These results are discussed in relation to the phenomenon of temper brittleness in steels. Embrittlement kinetics in iron-antimony alloys are shown to be consistent with an antimony diffusion controlled segregation mechanism.  相似文献   

7.
The interaction of hydrogen with the zinc-containing electrometallurgical slime of the Severstal’ metallurgical works has been studied. The sequence of transformations in the slime heated to 1100°C in hydrogen or air has been established. The experimental and calculated weight losses coincide. Some of the carbonates are shown to decompose in the temperature range 300–700°C, and most iron and zinc oxides are reduced to a metal. In the temperature range 650–850°C, zinc is almost completely sublimated. At temperatures above 800°C, complex oxides are reduced and calcium and magnesium carbonates and sulfates are likely to decompose. Experimental digital data on the zinc sublimation rate are processed by the least squares method with approximating equations used in thermal analysis. The kinetics of nonisothermal zinc sublimation is comprehensively analyzed using a unique procedure developed for taking into account the background of a peak and the effect of accompanying processes. An equation for the calculation of the zinc sublimation rate under experimental conditions (fluidized bed) is given and tested.  相似文献   

8.
《粉末冶金学》2013,56(14):99-112
Abstract

Tin containing a fine dispersion of oxide has been prepared by the extrusion of atomized tin powder into rod. The oxide dispersion was stable up to ≮ 200°C and its presence influenced the grain growth of the tin. The hardness and tensile-strength values of the extruded tin powder were about twice those of cast tin and were independent of the oxide content of the powder within the range 0·2-1·5 wt.-%. This indicated that the dispersion of the oxide, governed by the particle size of the powder, was of more importance than the thickness of the oxide films.

Stress-to-rupture tests at 150°C showed the material made from powder to be markedly superior to either unalloyed tin or a tin–6% antimony alloy. The best Eltress-to-rupture properties were obtained in dispersion-hardened material heat-treated to give a fibrous structure of relatively large grains, elongated in the extrusion direction. Possible applications of dispersion-hardened tin are briefly considered.  相似文献   

9.
The isothermal and cyclic oxidation behavior of a new class of damage-tolerant niobium aluminide (Nb3Al-xTi-yCr) intermetallics is studied between 650 °C and 850 °C. Protective diffusion coatings were deposited by pack cementation to achieve the siliciding or aluminizing of substrates with or without intervening Mo or Ni layers, respectively. The compositions and microstructures of the resulting coatings and oxidized surfaces were characterized. The isothermal and cyclic oxidation kinetics indicate that uncoated Nb-40Ti-15Al-based intermetallics may be used up to ∼750 °C. Alloying with Cr improves the isothermal oxidation resistance between 650 °C and 850 °C. The most significant improvement in oxidation resistance is achieved by the aluminization of electroplated Ni interlayers. The results suggest that the high-temperature limit of niobium aluminide-based alloys may be increased to 800 °C to 850 °C by aluminide-based diffusion coatings on ductile Ni interlayers. Indentation fracture experiments also indicate that the ductile nickel interlayers are resistant to crack propagation in multilayered aluminide-based coatings.  相似文献   

10.
A new Ti-Al-Nb alloy with a composition of Ti-27.5Al-13Nb (at. pct) was proposed. The density of this alloy was 4.7 g/cm3, which is about 13 pct lower than that for O+B2 alloys. After hot processing, the alloy was heat treated under two conditions: directly aged at 850 °C (DA treatment), or cooled from above the β-transus temperature with a cooling rate of 3 °C/min and then aged at 850 °C (BCA treatment). Under the present heat-treatment conditions, the phase constitution was primarily O+α 2. A very fine Widmanstätten microstructure was obtained after the DA treatment, while a microstructure with coarse O plates was obtained after the BCA treatment. The tensile properties were investigated at 20 °C to 950 °C, and the creep behavior was investigated at 650 °C to 750 °C/90 to 380 MPa. The elongation to fracture at room temperature for the DA-treated tensile specimen was as high as 2.6 pct, despite the high Al content in this alloy. In comparison with the O+B2 ternary alloys, this alloy showed higher specific proof stress at temperatures over 800 °C and higher creep strength. The stress exponent and the apparent activation energy for creep were calculated. The fracture mechanism was discussed.  相似文献   

11.
The oxidation kinetics of TiAl intermetallic at 500–900 °C in air is studied using a gravimetric method, and the phase composition of the scale is studied using an x-ray phase analysis. At t > 600 °C, the kinetics of oxidation is described by a parabolic equation. The oxides TiO2 (rutile), γ-Al2O3, α-Al2O3, Ti2O3 are found in the scale. It is shown that at the first stage the γ-Al2O3 and low-titanium oxides form on the sample surface at t < 70 °C. At t ≥ 850 °C, the Ti2O3 forms on the external surface of the scale, TiAl3 is found in the sublayer at the alloy/scale interface. It is shown that at t ≤ 800 °C the process is controlled by oxygen diffusion. At t > 800 °C, the oxidation mechanism changes: counterdiffusion of titanium ions through interstitial sites in TiO2 lattice occurs.  相似文献   

12.
Chlorination and carbochlorination of tantalum and niobium low-grade concentrate (LGC) and high-grade concentrate (HGC), obtained by leaching of tin slag, were studied using Cl2 + N2 and Cl2 + CO + N2 gas mixtures. Thermogravimetric analysis and conventional boat experiments were performed between 200 °C and 1000 °C. Chemical analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to characterize the samples and reaction products. Chlorination of LGC led to the recovery of about 95 pct of tantalum and niobium compounds at 1000 °C. However, the tantalum and niobium chlorinated compounds were contaminated by chlorides of Fe, Mn, etc. For HGC, chlorination at 1000 °C allowed the extraction of about 84 and 65 pct of the niobium and tantalum compounds, respectively. The recovered condensates were composed of pure tantalum and niobium chlorinated compounds. The apparent activation energies E a for the chlorination of LGC and HGC, between 850 °C and 1000 °C, were 166 and 293 kJ/mole, respectively. At temperatures lower than 650 °C, the apparent activation energies for the LGC and HGC carbochlorination were 116 and 103 kJ/mole, respectively. Total extraction of the tantalum and niobium compounds was achieved by the carbochlorination of the LGC at 1000 °C. The generated tantalum and niobium chlorinated compounds were contaminated by the chlorides of Fe, Mn, Al, and Ca. The carbochlorination of the HGC at 500 °C allowed complete extraction and recovery of pure tantalum and niobium compounds. These results confirm the importance of obtaining an HGC from tin slag before its subsequent chlorination. The carbochlorination of such a concentrate could be an efficient process for the recovery of relatively pure tantalum and niobium chlorinated compounds at low temperatures.  相似文献   

13.
This study investigates the thermal fatigue cracking behavior of high-silicon spheroidal graphite (SG) cast iron. Irons with different residual magnesium contents ranging from 0.038 to 0.066 wt pct are obtained by controlling the amount of spheroidizer. The repeated heating/cooling test is performed under cyclic heating in various temperatures ranging from 650 °C to 800 °C. Experimental results indicate that the thermal fatigue cracking resistance of high-silicon SG cast iron decreases with increasing residual magnesium content. The shortest period for crack initiation and the largest crack propagation rate of the specimens containing 0.054 and 0.060 wt pct residual magnesium contents are associated with heating temperatures of 700 °C and 750 °C. Heating temperatures outside this range can enhance the resistance to thermal fatigue crack initiation and propagation. When thermal fatigue cracking occurs, the cracks always initiate at the surface of the specimen. The major path of crack propagation is generally along the eutectic cell-wall region among the ferrite grain boundaries, which is the location of MgO inclusions agglomerating together. On the other hand, dynamic recrystallization of ferrite grains occurs when the thermal cycle exceeds a certain number after testing at 800 °C. Besides, dynamic recrystallization of the ferrite matrix suppresses the initiation and propagation of thermal fatigue cracking.  相似文献   

14.
Studies of solidification behavior have been conducted on cast Al-Fe-V-Si alloys. The first phase to precipitate during solidification of an Al-8.3Fe-0.8V-0.9Si alloy is Al3Fe(V,Si), which is isostructural with the Al3Fe phase. Thereafter, the solidification proceeds through several invariant reactions. The final invariant reaction is associated with a pronounced arrest. The temperature of this arrest is a function of the cooling rate and modification treatment, with magnesium added as an Al-20 pct Mg or Ni-20 pct Mg master alloy. The coarse iron aluminide precipitates in a slow-cooled (>1 °C/s) cast structure transform to a ten-armed, star-like morphology upon chill casting the melt (cooling rate >10 °C/s) from 900 °C or upon water quenching from above 800 °C. Treatment with magnesium refines the morphology, size, and distribution of iron aluminide precipitates in slow-cooled alloys.  相似文献   

15.
Reactive wetting by infrared heating of a BAg-8 braze on a CP-Ti substrate is achieved at 1073 K (800 °C) for 300 seconds. Increasing the test temperature from 1073 K to 1123 K (800 °C to 850 °C) results in great improvement of the wettability on the CP-Ti substrate due to the lower melt viscosity at higher test temperature and the alloying effect of Cu into the CP-Ti substrate to form the interfacial eutectoid layer.  相似文献   

16.
《Acta Metallurgica》1986,34(6):989-1000
The phase separation associated with the misscibility gap in Fe-Cr was studied via small angle neutron scattering. Studies were made on two sets of Fe-32Cr alloys identically aged at 500°C for times to 200 h. Each set, however, received different solutionization treatments, one being at 1200°C and the other at 850°C. In both cases the temporal evolution of the peak position and height could be expressed as ta and ta, respectively. Values of these parameters showed strong dependence on solutionization treatment with a′ = 0.12, a″ = 1.0 for 850°C solutionization and a′= 0.20, a″ = 0.6 for 1200°C solutionization. Examination of the 850°C solutionized set showed significant departure from the Cahn-Hilliard-Cook and Langer-Bar-on-Miller theories. The 1200°C solutionized set, in contrast, showed reasonable accord with the two theories allowing extraction of relevant thermodynamic parameters based on quantitative analysis. These results indicate that the early stages of spinodal decomposition are being viewed for the high temperature solutionization set of aging experiments.  相似文献   

17.
Fuel pins removed from actual irradiated fuel bundles discharged from Pressurised Heavy Water Reactors (PHWRs) have been used for experimental study of high temperature creep deformation as functions of cladding temperature and internal fission gas pressure. Experiment consisted of localized heating of 100 mm long segment of the fuel pins in a furnace in inert atmosphere at temperatures 700°C, 800°C, 850°C and 900°C for 10–15 minutes. The internal pressure and the total void volume in the fuel pins were estimated by puncture test on sibling pins from the same fuel bundle. After the heating experiment the diameter of the pin along the length was measured to obtain the diameter increase due to high temperature creep. Analysis of the experimental data for fuel pins with internal pressure 0.55 ± 0.05 MPa, provided the following empirical correlation for creep rate of the cladding as a function of temperature Creep rate (s?1) = 2.23 × 1010 × exp (?305500/RT), for temperatures in the range of 800°C–900°C, where, R is gas constant, 8.314 J/mol K and T is temperature in K. For fuel pins with different internal fission gas pressures, the correlation obtained for the cladding strain as a function of internal pressure (at room temperature) was $$ \begin{gathered} Cladding strain = 118.22 \times 10^{ - 3} exp (0.53P), for temperature = 900^\circ C \hfill \\ where, P is the internal pressure in MPa at room temperature. \hfill \\ \end{gathered} $$ This paper presents the details of the experiment and the results.  相似文献   

18.
We have used x-ray phase analysis to study the composition of the products of reaction between oxygen and nanocrystalline powders with particle sizes 15, 40, 55, and 80 nm, and also specimens pressed (and sintered) from them. The powders were oxidized in air at 100°C (400 h) to 500°C (5 min), while the sintered specimens were oxidized at 600–900°C for 15, 120, and 240 min. In all cases, in the initial oxidation step the oxynitride Ti(OxNy) is formed, which over time is oxidized to TiO, Ti2O3, Ti3O5, TiO2 (anatase) and TiO2 (rutile). In the range 600–800°C, formation of a continuous oxide layer and conversion of anatase to rutile slows down diffusion of oxygen in the scale. We have established that at 900°C, the growth rate of the scale thickness increases and so the reflections from the oxynitride are barely noticeable on the diffraction patterns taken from the surface of the oxidized specimen. In these diffraction patterns, along with strong reflections from the rutile, we also observed weak reflections from lower oxides and anatase, which may be due to reaction between oxygen and the titanium ions diffused to the scale surface. We have concluded that at T > 850°C, the mechanism for oxidation of TiN changes. This is due to superposition of counterdiffusion of titanium ions on the diffusion of oxygen. __________ Translated from Poroshkovaya Metallurgiya, Nos. 3–4(448), pp. 72–78, March–April, 2006.  相似文献   

19.
The volatilization of stibnite (Sb2S3) in nitrogen and mixtures of nitrogen-oxygen was investigated in the temperature range 973 K to 1423 K (700 °C to 1150 °C). The overall volatilization reaction study was carried out using a thermogravimetric analysis technique under various gas flow rates. The results indicated that in an inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3(g) with a linear rate up to about 1173 K (900 °C). At temperatures above 1223 K (950 °C), stibnite decomposes to antimony and sulfur gas, impairing the antimony volatilization. For linear behavior in nitrogen gas, kinetic constants were determined, and an activation energy of 134 kJ/mol was calculated for the volatilization reaction. However, in the presence of oxygen, antimony can be volatilized efficiently as valentinite (Sb2O3) at low oxygen concentrations (approximately 1 to 5 pct) at approximately 1173 K to 1223 K (900 °C to 950 °C); otherwise, at higher partial pressures of oxygen, the volatilization of antimony is limited by the formation of nonvolatile cervantite (SbO2). In highly oxidizing atmospheres, a high vaporization of antimony could be achieved only at temperatures higher than 1423 K (1150 °C) where cervantite becomes unstable and decomposes into SbO(g) and 0.5O2(g).  相似文献   

20.
Effect of heat treatment on the microstructure and resistance to abrasive wear has been studied in an unalloyed white iron used for manufacturing cylindrical pebbles used as grinding media by the cement and other industries. Heat treatment comprised holding at 800 °C, 850 °C, 900 °C, and 950 °C for 30, 60, 90, 120, and 180 minutes followed by oil quenching. Heat treatment in general improved the wear resistance over that in the as-cast (as-received) state. The extent of maximum improvement differed with temperature and in the decreasing order occurred at (1) 180 minutes, 800 °C, OQ; (2) 30 minutes, 950 °C, OQ; (3) 90 minutes, 900 °C, OQ; and (4) 180 minutes, 850 °C, OQ. From the point of view of commercial application, the heat treatment at (2) is most favored. Microstructural changes occurring during heat treating comprised (1) changes in matrix microstructure; (2) a reduction in volume fraction of massive carbides due to its part graphitization/destabilization; and (3) changes in graphite morphology, size, and distribution. Amongst the aforesaid changes, graphitization has emerged as the key parameter in improving wear resistance. Graphite morphology in a near-nodular form of optimum size and distribution was found to be most effective. Upon increasing the heat-treating temperature, the tendency of nodules to develop spikes increased. Similarly, interlinking of graphite flakes was also observed. These features and the possible formation of free ferrite adversely affected wear resistance. The role of other beneficial changes in the microstructure, e.g., globularization of carbides, possible retention of austenite, and formation of optimum volume fraction of martensite, have been duly considered while optimizing microstructure(s). The key feature of the present study is that, despite its fundamental significance, it has a well-focused application potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号