首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Martensite in an Fe-1.22C alloy was tempered at 523, 573, and 623 K and examined by transmission electron microscopy (TEM) and Mössbauer effect spectroscopy (MES) to identify the morphology and type of carbide formed at the beginning of the third stage of tempering. Carbides formed in three morphologies: on twins within the martensite plates, in the matrix of twin-free areas of the martensite plates, and along the interfaces of the martensite plates. Chi-carbide (χ), as identified by selected area diffraction (SAD), was associated with each carbide morphology in specimens tempered at 573 K. Cementite (θ) together with chi-carbide was observed in specimens tempered at 623 K. Small amounts (about 2 pct) of retained austenite were observed by MES of specimens tempered at 523 K. The transformation of the 25 pct retained austenite in as-quenched specimens was related to the χ-carbide formed at the martensite plate interfaces during tempering. The MES results also show the presence of χ-carbide in the specimen tempered at 523 K and yields parameters indicative of a mixture of χ and θ carbides for the specimens tempered at 573 K and 623 K. MES measurements of the magnetic transition temperatures of the carbides show diffuse transitions but suggest thatχ is the dominant carbide in the tempering temperature range examined.  相似文献   

2.
Mössbauer effect spectroscopy has been used to study changes in the microstructure of an Fe-1.22. wt pct C alloy due to tempering between 373 and 523 K. The orthorhombic transition carbide, η-Fe2C, was identified by transmission electron microscopy and the similarity of ∈-carbide electron diffraction patterns to η-carbide diffraction patterns is noted. Systematic changes in the Mosbauer parameters of martensite and austenite are presented for the various stages of tempering. The same amount of C remains randomly dissolved in the retained austenite throughout tempering and some C is retained in the martensite throughout the range of transition carbide formation. Two sets of Mössbauer parameters corresponding to magnetic phases other than martensite and cementite have been found. These parameters may come from η-carbide, but alternative interpretations are presented.  相似文献   

3.
In the present study, effects of Mn addition on cracking phenomenon occurring during cold rolling of ferritic light-weight steels were clarified in relation to microstructural modification involving κ-carbide, austenite, and martensite. Four steels were fabricated by varying Mn contents of 3 to 12 wt pct, and edge areas of steel sheets containing 6 to 9 wt pct Mn were cracked during the cold rolling. The steels were basically composed of ferrite and austenite in a band shape, but a considerable amount of κ-carbide or martensite existed in the steels containing 3 to 6 wt pct Mn. Microstructural observation of the deformed region of fractured tensile specimens revealed that cracks which were initiated at ferrite/martensite interfacial κ-carbides readily propagated along ferrite/martensite interfaces or into martensite areas in the steel containing 6 wt pct Mn, thereby leading to the center or edge cracking during the cold rolling. In the steel containing 9 wt pct Mn, edge cracks were found in the final stage of cold rolling because of the formation of martensite by the strain-induced austenite to martensite transformation, whereas they were hardly formed in the steel containing 12 wt pct Mn. To prevent or minimize the cracking, it was recommended that the formation of martensite during the cooling from the hot rolling temperature or during the cold rolling should be suppressed, which could be achieved by the enhancement of thermal or mechanical stability of austenite with decreasing austenite grain size or increasing contents of austenite stabilizers.  相似文献   

4.
The aging at room temperature (RT) and the tempering behavior in the temperature range 293 to 973 K of ternary iron-nickel-carbon martensite (containing 14.4 at. pct Ni and 2.35 at. pct C) was investigated principally by using X-ray diffractometry to analyze changes in the crystalline structure and differential scanning calorimetry to determine heats of transformation and activation energies. These techniques also were used in the parallel study performed in this work of the tempering behavior of FeC martensite (containing about 4.4 at. pct C) in the temperature range 298 to 773 K. Analysis of the structural changes revealed that in both FeNiC and FeC the following processes occurred: (1) formation of carbon enrichments and development of a periodic arrangement of planar carbon-rich regions up to 423 K; (2) precipitation of ε/η transition carbide and transformation of a part of the austenite into ferrite under simultaneous enrichment with carbon of the remaining austenite (between 423 and 523 K); (3) decomposition of the retained austenite into ferrite and cementite between 523 and 723 K (only partly for FeNiC); (4) precipitation of cementite between 523 and 723 K; and (5) for FeNiC, reformation of austenite from ferrite and cementite above 773 K. A short comparative discussion concerning the first stage of martensite decomposition for FeC, FeNiC, FeN, and FeNiN martensites is given.  相似文献   

5.
Steel is a particularly challenging material to semisolid process because of the high temperatures involved and the potential for surface oxidation. Hot-rolled X210CrW12 tool steel was applied as a feedstock for thixoforming. The samples were heated up to 1525?K (1250?°C) to obtain 30?pct of the liquid phase. They were pressed in the semisolid state into a die preheated up to 473?K (200?°C) using a device based on a high-pressure die casting machine. As a result, a series of main bucket tooth thixo-casts for a mining combine was obtained. The microstructure of the thixo-cast consisted of austenite globular grains (average grain size 46 ??m) surrounded by a eutectic mixture (ferrite, austenite, and M7C3 carbides). The average hardness of primary austenite grains was 470?HV0.02 and that of eutectic 551?HV0.02. The X-ray analysis confirmed the presence of 11.8?pct ??-Fe, 82.4?pct ??-Fe, and 5.8?pct M7C3 carbides in the thixo-cast samples. Thermal and dilatometric effects were registered in the solid state, and the analysis of curves enabled the determination of characteristic temperatures of heat treatment: 503?K, 598?K, 693?K, 798?K, 828?K, 903?K, and 953?K (230?°C, 325?°C, 420?°C, 525?°C, 555?°C, 630?°C, 680?°C). The thixo-casts were annealed at these temperatures for 2?hours. During annealing in the temperature range 503?K to 693?K (230?°C to 420?°C), the hardness of primary globular grains continuously decreased down to 385HV0.02. The X-ray diffraction showed a slight shift of peaks responsible for the tension release. Moreover, after the treatment at 693?K (420?°C), an additional peak from precipitated carbides was observed in the X-ray diffraction. Thin plates of perlite (average hardness 820?HV0.02) with carbide precipitates appeared at the boundaries of globular grains at 798?K (525?°C). They occupied 17?pct of the grain area. Plates of martensite were found in the center of grains, while the retained austenite was observed among them (average hardness of center grains was 512?HV0.02). A nearly complete decomposition of metastable austenite was achieved after tempering at 828?K (555?°C) due to prevailing lamellar pearlite structure starting at grain boundaries and the martensite located in the center of the grains. The X-ray analysis confirmed the presence of 3.4?pct ??-Fe, 84.6?pct ??-Fe, and 12?pct M7C3 carbides. The dilatometric analysis showed that the transformation of metastable austenite into martensite took place during cooling from 828?K (555?°C). The additional annealing at 523?K (250?°C) for 2?hours after heat treatment at 828?K (555?°C) caused the precipitation of carbides from the martensite. After tempering at 903?K (630?°C), the thixo-cast microstructure showed globular grains consisting mainly of thick lamellar perlite of the average hardness 555?HV0.02.  相似文献   

6.
In an attempt to understand the role of retained austenite on the cryogenic toughness of a ferritic Fe-Mn-AI steel, the mechanical stability of austenite during cold rolling at room temperature and tensile deformation at ambient and liquid nitrogen temperature was investigated, and the microstructure of strain-induced transformation products was observed by transmission electron microscopy (TEM). The volume fraction of austenite increased with increasing tempering time and reached 54 pct after 650 °C, 1-hour tempering and 36 pct after 550 °C, 16-hour tempering. Saturation Charpy impact values at liquid nitrogen temperature were increased with decreasing tempering temperature, from 105 J after 650 °C tempering to 220 J after 550 °C tempering. The room-temperature stability of austenite varied significantly according to the + γ) region tempering temperature;i.e., in 650 °C tempered specimens, 80 to 90 pct of austenite were transformed to lath martensite, while in 550 °C tempered specimens, austenite remained untransformed after 50 pct cold reductions. After tensile fracture (35 pct tensile strain) at -196 °C, no retained austenite was observed in 650 °C tempered specimens, while 16 pct of austenite and 6 pct of e-martensite were observed in 550 °C tempered specimens. Considering the high volume fractions and high mechanical stability of austenite, the crack blunting model seems highly applicable for improved cryogenic toughness in 550 °C tempered steel. Other possible toughening mechanisms were also discussed. Formerly Graduate Student, Seoul National University.  相似文献   

7.
As-quenched and tempered martensite in an Fe-0.2 pct C alloy were subjected to tensile testing and structural characterization by light and transmission electron microscopy. The light temper, 400°C-l min, did not change packet morphology, but did reduce dislocation density, coarsen lath size and cause the precipitation of carbides of a variety of sizes. The yield strength of the as-quenched martensite was strongly dependent upon packet size according to a Hall-Petch relationship, but tempering significantly diminished the packet size dependency, a result attributed to packet boundary carbide precipitation and the attendant elimination of carbon segregation present in the as-quenched martensite because of autotempering. Examination of thin foils from strained tensile specimens showed that a well-defined cell structure developed in the as-quenched martensite, but that the random distribution of jogged dislocations and carbide particles produced by tempering persisted on deformation of the tempered specimens. The authors were formerly Research Assistant and Professor, respectively, at Lehigh University, Bethlehem, PA.  相似文献   

8.
Retained austenite transformation was studied for a 5 wt pct Cr cold work tool steel tempered at 798 K and 873 K (525 °C and 600 °C) followed by cooling to room temperature. Tempering cycles with variations in holding times were conducted to observe the mechanisms involved. Phase transformations were studied with dilatometry, and the resulting microstructures were characterized with X-ray diffraction and scanning electron microscopy. Tempering treatments at 798 K (525 °C) resulted in retained austenite transformation to martensite on cooling. The martensite start (M s ) and martensite finish (M f ) temperatures increased with longer holding times at tempering temperature. At the same time, the lattice parameter of retained austenite decreased. Calculations from the M s temperatures and lattice parameters suggested that there was a decrease in carbon content of retained austenite as a result of precipitation of carbides prior to transformation. This was in agreement with the resulting microstructure and the contraction of the specimen during tempering, as observed by dilatometry. Tempering at 873 K (600 °C) resulted in precipitation of carbides in retained austenite followed by transformation to ferrite and carbides. This was further supported by the initial contraction and later expansion of the dilatometry specimen, the resulting microstructure, and the absence of any phase transformation on cooling from the tempering treatment. It was concluded that there are two mechanisms of retained austenite transformation occurring depending on tempering temperature and time. This was found useful in understanding the standard tempering treatment, and suggestions regarding alternative tempering treatments are discussed.  相似文献   

9.
The toughness of SAE 4340 steel with low (0.003 wt pct) and high (0.03 wt pct) phosphorus has been evaluated by Charpy V notch (CVN) impact and compact tension plane strain fracture toughness (K 1c) tests of specimens quenched and tempered up to 673 K (400°C). Both the high and low P steel showed the characteristic tempered martensite embrittlement (TME) plateau or trough in room temperature CVN impact toughness after tempering at temperatures between 473 K (200°C) and 673 K (400°C). The CVN energy absorbed by low P specimens after tempering at any temperature was always about 10 J higher than that of the high P specimens given the same heat treatment. Interlath carbide initiated cleavage across the martensite laths was identified as the mechanism of TME in the low P 4340 steel, while intergranular fracture, apparently due to a combination of P segregation and carbide formation at prior austenite grain boundaries, was associated with TME in the high P steel.K IC values reflected TME in the high P steels but did not show TME in the low P steel, a result explained by the formation of a narrow zone of ductile fracture adjacent to the fatigue precrack during fracture toughness testing. The ductile fracture zone was attributed to the low rate of work hardening characteristic of martensitic steels tempered above 473 K (200°C).  相似文献   

10.
Dual-phase steel with ferrite-martensite-bainite microstructure exhibited secondary hardening in the subcritical heat affected zone during fiber laser welding. Rapid isothermal tempering conducted in a Gleeble simulator also indicated occurrence of secondary hardening at 773 K (500 °C), as confirmed by plotting the tempered hardness against the Holloman–Jaffe parameter. Isothermally tempered specimens were characterized by analytic transmission electron microscopy and high-angle annular dark-field imaging. The cementite (Fe3C) and TiC located in the bainite phase of DP steel decomposed upon rapid tempering to form needle-shaped Mo2C (aspect ratio ranging from 10 to 25) and plate-shaped M4C3 carbides giving rise to secondary hardening. Precipitation of these thermodynamically stable and coherent carbides promoted the hardening phenomenon. However, complex carbides were only seen in the tempered bainite and were not detected in the tempered martensite. The martensite phase decomposed into ferrite and spherical Fe3C, and interlath-retained austenite decomposed into ferrite and elongated carbide.  相似文献   

11.
Carbon distribution during tempering of a nanostructured bainitic steel was analyzed by atom probe tomography (APT). Three different types of particles are detected on samples tempered at 673 K (400 °C) for 30 minutes: lower bainite cementite with a carbon content of ~25 at. pct, ε-carbides with a carbon content close to 30 at. pct, and carbon clusters, small features with a carbon content of ~14 at. pct indicative of a stage of tempering prior to precipitation of ε-carbide. After tempering at 773 K (500 °C) for 30 minutes, the ε-carbide-to-cementite transition was observed. Solute concentration profiles across carbide/ferrite interfaces showed the distribution of substitutional elements in ε-carbide and cementite for all the tempering conditions.  相似文献   

12.
Metallographic studies have been conducted on a 0.024 pct C-16 pct Cr-1.5 pct Mo-5 pct Ni stainless steel to study the phase reactions associated with heat treatments and investigate the strengthening mechanisms of the steel. In the normalized condition, air cooled from 1010 °C, the microstructure consists of 20 pct ferrite and 80 pct martensite. Tempering in a temperature range between 500 and 600 °C results in a gradual transformation of martensite to a fine mixture of ferrite and austenite. At higher tempering temperatures, between 600 and 800 °C, progressively larger quantities of austenite form and are converted during cooling to proportionally increasing amounts of fresh martensite. The amount of retained austenite in the microstructure is reduced to zero at 800 °C, and the microstructure contains 65 pct re-formed martensite and 35 pct total ferrite. Chromium rich M23C6 carbides precipitate in the single tempered microstructures. The principal strengthening is produced by the presence of martensite in the microstructure. Additional strengthening is provided by a second tempering treatment at 400 °C due to the precipitation of ultrafine (Cr, Mo) (C,N) particles in the ferrite.  相似文献   

13.
In the present study, a ferritic light-weight steel was tempered at 973 K (700 °C) for various tempering times, and tensile properties and deformation mechanisms were investigated and correlated to microstructure. ??-carbides precipitated in the tempered band-shaped martensite and ferrite matrix, and the tempered martensite became more decomposed with increasing tempering time. Tempering times for 3 days or longer led to the formation of austenite as irregular thick-film shapes mostly along boundaries between the tempered martensite and the ferrite matrix. Tensile tests of the 1-day-tempered specimen showed that deformation bands were homogeneously spread throughout the specimen, and that the fine carbides were sufficiently deformed inside these deformation bands resulting in high strength and ductility. The 3-day-tempered specimen showed a small amount of boundary austenite, which readily developed voids or cracks and became sites for fracture. This cracking at boundary austenites became more prominent in the 7- and 15-day-tempered specimens, as the volume fraction of boundary austenites increased with increasing tempering time. These findings suggested that, when the steel was tempered at 973 K (700 °C) for an appropriate time, i.e., 1 day, to sufficiently precipitate ??-carbides and to prevent the formation of boundary austenites, that the deformation occurred homogeneously, leading to overall higher mechanical properties.  相似文献   

14.
15.
Charpy V-notch (CVN) specimens from experimental heats of 5160 steel containing 0.001 and 0.034 mass pct phosphorus were austenitized at temperatures between 830 °C and 1100 °C, quenched to martensite, and tempered at temperatures between 100 °C and 500 °C. Scanning electron microscopy (SEM) was used to characterize the fracture surfaces of tested CVN specimens and carbide formation on prior austenite grain boundaries. Quench embrittlement, the susceptibility to intergranular fracture in as-quenched and low-temperature tempered high-carbon steels due to cementite formation as affected by phosphorus segregation on austenite grain boundaries, developed readily in specimens of the high phosphorus steel austenitized at all temperatures. The low phosphorus steel developed quench embrittlement only after austenitizing at 1100 °C. Intergranular fractures correlated with low room-temperature CVN impact toughness. The results are discussed with respect to the dissolution of carbides during austenitizing and the effect of phosphorus on grain boundary, carbide formation, and stability.  相似文献   

16.
The formation of austenite during tempering of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was investigated using an in situ thermo-magnetic technique to establish the kinetics of the martensite to austenite transformation and the stability of austenite. The austenite fraction was obtained from in situ magnetization measurements. It was found that during heating to the tempering temperature 1 to 2 vol pct of austenite, retained during quenching after the austenitization treatment, decomposed between 623 K and 753 K (350 °C and 480 °C). The activation energy for martensite to austenite transformation was found by JMAK-fitting to be 233 kJ/mol. This value is similar to the activation energy for Ni and Mn diffusion in iron and supports the assumption that partitioning of Ni and Mn to austenite are mainly rate determining for the austenite formation during tempering. This also indicates that the stability of austenite during cooling after tempering depends on these elements. With increasing tempering temperature the thermal stability of austenite is decreasing due to the lower concentrations of austenite-stabilizing elements in the increased fraction of austenite. After cooling from the tempering temperature the retained austenite was further partially decomposed during holding at room temperature. This appears to be related to previous martensite formation during cooling.  相似文献   

17.
The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct noniron metallic elements. Mössbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 °C) than for SAE 4130 steel (~300 °C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 °C) than for carbon steels (100 °C to 200 °C and 200 °C to 350 °C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 °C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 °C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in martensite that contains 0.5 to 1.0 at. pct carbon and in austenite that contains 6 to 7 at. pct carbon. There was no segregation of any substitutional elements.  相似文献   

18.
Using transmission electron microscopy, Mössbauer spectroscopy, and measurements of hardness, the carbide precipitation during tempering of steel X153CrMoV12 containing (mass pct) 1.55C, 11.90Cr, 0.70V, and 0.86Mo is studied after three treatments: quenching at RT and deep cryogenic treatment, DCT, at 77 K or 123 K (?196 °C or ?150 °C). In contrast to some previous studies, no fine carbide precipitation after long-time holding at cryogenic temperatures is detected. After quenching at room temperature, RT, the transient ε(ε′) carbide is precipitated between 373 K and 473 K (100 °C and 200 °C) and transformed to cementite starting from 573 K (300 °C). In case of DCT at 123 K (?150 °C), only fine cementite particles are detected after tempering at 373 K (200 °C) with their delayed coarsening at higher temperatures. Dissolution of cementite and precipitation of alloying element carbides proceed at 773 K (500 °C) after quenching at RT, although some undissolved cementite plates can also be observed. After DCT at 123 K (?150 °C), the transient ε(ε′) carbide is not precipitated during tempering, which is attributed to the intensive isothermal martensitic transformation accompanied by plastic deformation. In this case, cementite is the only carbide phase precipitated in the temperature range of 573 K to 773 K (300 °C to 500 °C). If DCT is carried out at 77 K (?196 °C), the ε(ε′) carbide is found after tempering at 373 K to 473 K (100 °C to 200 °C). Coarse cementite particles and the absence of alloying element carbides constitute a feature of steel subjected to DCT and tempering at 773 K (500 °C). As a result, a decreased secondary hardness is obtained in comparison with the steel quenched at RT. According to Mössbauer studies, the structure after DCT and tempering at 773 K (500 °C) is characterized by the decreased fraction of the retained austenite and clustering of alloying elements in the α solid solution. It is suggested that a competition between the strain-induced transformation of the retained austenite and carbide precipitation during the wear can control the life of steel tools.  相似文献   

19.
A series of 4130 steels modified with 0.50 pct Mo and 0.75 pct Mo were tempered at temperatures between 300 and 700 °C for one hour. The changes in the carbide dispersion and matrix substructure produced by tempering were measured by transmission electron microscopy. These measurements were correlated with resistance to hydrogen stress cracking produced by cathodic charging of specimens in three-point bending. Scanning electron microscopy showed that specimens tempered between 300 and 500 °C failed by intergranular cracking while those tempered at higher temperatures failed by a transgranular fracture mode. Auger electron spectroscopy showed that the intergranular fracture was associated with hydrogen interaction with P segregation and carbide formation at prior austenite grain boundaries. Transgranular cracking was initiated at inclusion particles from which cracks propagated to produce flat fracture zones extending over several prior austenite grains. The 4130 steels modified with higher Mo content resisted tempering and showed better hydrogen stress cracking resistance than did the unmodified 4130 steel. The transition in fracture mode is attributed to a decohesion mechanism in the low temperature tempered samples and a pressure mechanism in the highly tempered samples.  相似文献   

20.
The effect of prior deformation on the processes of tempering and austenitizing of lath martensite was studied by using low carbon steels. The recrystallization of as-quenched lath martensite was not observed on tempering while the deformed lath martensite easily recrystallized. The behavior of austenite formation in deformed specimens was different from that in as-quenched specimens because of the recrystallization of deformed lath martensite. The austenitizing behavior (and thus the austenite grain size) in deformed specimens was controlled by the competition of austenite formation with the recrystallization of lath martensite. In the case of as-quenched (non-deformed) lath martensite, the austenite particles were formed preferentially at prior austenite grain boundaries and then formed within the austenite grains mainly along the packet, block, and lath boundaries. On the other hand, in the case of lightly deformed (30 to 50 pct) lath martensite, the recrystallization of the matrix rapidly progressed prior to the formation of austenite, and the austenite particles were formed mainly at the boundaries of fairly fine recrystallized ferrite grains. When the lath martensite was heavily deformed (75 to 84 pct), the austenite formation proceeded almost simultaneously with the recrystallization of lath martensite. In such a situation, very fine austenite grain structure was obtained most effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号