首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mössbauer effect spectroscopy has been used to study changes in the microstructure of an Fe-1.22. wt pct C alloy due to tempering between 373 and 523 K. The orthorhombic transition carbide, η-Fe2C, was identified by transmission electron microscopy and the similarity of ∈-carbide electron diffraction patterns to η-carbide diffraction patterns is noted. Systematic changes in the Mosbauer parameters of martensite and austenite are presented for the various stages of tempering. The same amount of C remains randomly dissolved in the retained austenite throughout tempering and some C is retained in the martensite throughout the range of transition carbide formation. Two sets of Mössbauer parameters corresponding to magnetic phases other than martensite and cementite have been found. These parameters may come from η-carbide, but alternative interpretations are presented.  相似文献   

2.
The behavior of the thermally stable austenite in the ductile fracture surface layer of a grain-refined and tempered 9Ni steel broken at 77 K was studied through use of Möss-bauer spectroscopy and transmission electron microscopy. Thin foils revealing the mi-crostructural profile of the fracture surface layer were prepared by electroplating a thick pure iron layer on the fresh fracture surface, then thinning a profile sample through a combination of conventional twin-jet electropolishing and ion milling techniques. The re-sults of both Mössbauer spectroscopy and TEM studies showed that the thermally stable austenite transforms to a dislocated martensite in the deformed zone adjacent to the duc-tile fracture surface. This result suggests that transformation of the retained austenite present in tempered 9Ni steel is compatible with low temperature toughness, at least when the transformation product is a ductile martensite.  相似文献   

3.
《Acta Metallurgica Materialia》1992,40(10):2471-2482
Evidence for a coherent bond at the interfaces between retained austenite and as-quenched martensite in FeNiC alloys and the relation of coherent interfaces to the abnormally high tetragonality of martensite are presented. The iron based alloys with 20 Ni-0.73 C, 28 Ni-0.2 C, 20 Ni-1.2 C, 25 Ni-0.7 C, 30 Ni-0.37 C, 33.5 Ni-0.01 C (in wt%) were studied by means of X-ray and neutron diffraction, Mössbauer spectroscopy, internal friction, electrical resistivity and magnetic susceptibility. It is shown that the break of coherency occurs during heating of the freshly formed twinned martensite in the temperature range of 100–200 K and it is accompanied by a relaxation of stresses in the retained austenite and a decrease of tetragonality. A new internal friction peak centered at 145 K was observed and attributed to movement of coherent interfaces and to the subsequent break of coherency. The relation between abnormally high tetragonality and coherency at the interface was confirmed in experiments with external deformation of virgin martensite at temperatures around 100 K. It is shown that the plate morphology of martensite is a necessary condition for a coherent bond at the interface. A possible role of atomic ordering of austenite in abnormally high tetragonality is discussed. Mössbauer measurements gave evidence for nickel-rich regions in initial austenite. During quenching the regions with the highest nickel content were assumed to remain austenitic inside the martensite plates. The conclusion about the coherency at the interface between the freshly formed martensite and the ordered regions in the retained austenite and at the interface along the martensite plates as a reason for high tetragonality of the FeNiC martensite with plate morphology is made.  相似文献   

4.
The distribution of nitrogen atoms in austenite and during the different stages of aging and tempering of martensite is studied by Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy (TEM). Transmission Mössbauer spectroscopy (TMS) and conversion electron Mössbauer spectroscopy (CEMS) are used for studying the austenite phase where the distribution of nitrogen atoms is found to depend on the nitriding method, gas nitriding in our case, or ion implantation. Conversion electron Mössbauer spectroscopy, which concerns a depth predominantly less than 200 nm, reveals a nitrogen atom distribution different from that found in the bulk by TMS. The identification and kinetics of the stages of aging and tempering of martensite are followed by TMS measurements, and the phase characterization is confirmed by X-ray diffraction and TEM. The major stages are the early ordering of nitrogen atoms, which leads to small coherent precipitates of α-Fe16N2; the passage by thickening to semicoherent precipitates of α-Fe16N2; the dissolution of α-Fe16N2 with the concomitant formation of /gg’-Fe4N; and the decomposition of retained austenite by tempering. The three first stages correspond to activation energies of 95, 126, and 94 kJ/mole, respectively, consistent with the nitrogen diffusion for the first and third stages and the dislocation pipe diffusion of iron for the second.  相似文献   

5.
The extent of the martensitic transformation on the surface was measured with reference to the bulk value in a quenched 1095 steel using the Mössbauer effect scattering technique. The difference between surface and bulk austenite concentration was most evident in oil-quenched specimens which have 27 to 29 pct austenite in the bulk while retaining only 15 to 17 pct on the surface. This effect persisted even when 0.1 cm of material was removed by electropolishing of the as-quenched surface, confirming that the martensitic transformation could proceed spontaneously at the new surface exposed by electropolishing. Analysis of the Mössbauer and X-ray diffraction data indicated that the surface martensite extended to a depth greater than 0.3 Μm and less than 20 to 30 μm. Implications of these observations to the determination of retained austenite are discussed.  相似文献   

6.
Aging of Fe-based martensites at subambient temperatures is studied by means of neutron and X-ray diffraction, Mössbauer spectroscopy, positron-lifetime, internal friction, electrical resistivity, magnetic susceptibility, and dilatometric measurements. Abnormally high or abnormally low tetragonality is observed in the freshly formed martensite alloyed with Ni or Mn in accordance with previous studies. It is shown that the high tetragonality is the result of stresses arising from the coherency at the interface between virgin martensite and retained austenite. The coherency is broken during aging in the temperature range of 100 to 200 K, and it is accompanied by a decrease of tetragonality. The new internal friction peak centered at 145 K corresponds to the movement of the coherent interfaces and the break of coherency. Correlation between shortrange atomic ordering in austenite and the high tetragonality of the virgin martensite is evident. It is shown that aging at temperatures from about 170 to 270 K, defined as the second stage of aging, is controlled by the pinning of dislocations by C atoms and the third stage (mainly above 250 K) by the clustering of C atoms in a solid solution. By means of Mössbauer spectroscopy, electrical resistivity, and magnetic susceptibility measurements, a striking difference is shown between the redistribution of C and N atoms above 200 K. Evidence for the clustering of C and ordering of N is given and discussed.  相似文献   

7.
Martensite in an Fe-1.22C alloy was tempered at 523, 573, and 623 K and examined by transmission electron microscopy (TEM) and Mössbauer effect spectroscopy (MES) to identify the morphology and type of carbide formed at the beginning of the third stage of tempering. Carbides formed in three morphologies: on twins within the martensite plates, in the matrix of twin-free areas of the martensite plates, and along the interfaces of the martensite plates. Chi-carbide (χ), as identified by selected area diffraction (SAD), was associated with each carbide morphology in specimens tempered at 573 K. Cementite (θ) together with chi-carbide was observed in specimens tempered at 623 K. Small amounts (about 2 pct) of retained austenite were observed by MES of specimens tempered at 523 K. The transformation of the 25 pct retained austenite in as-quenched specimens was related to the χ-carbide formed at the martensite plate interfaces during tempering. The MES results also show the presence of χ-carbide in the specimen tempered at 523 K and yields parameters indicative of a mixture of χ and θ carbides for the specimens tempered at 573 K and 623 K. MES measurements of the magnetic transition temperatures of the carbides show diffuse transitions but suggest thatχ is the dominant carbide in the tempering temperature range examined.  相似文献   

8.
Martensite in an Fe-1.22C alloy was tempered at 523, 573, and 623 K and examined by transmission electron microscopy (TEM) and Mössbauer effect spectroscopy (MES) to identify the morphology and type of carbide formed at the beginning of the third stage of tempering. Carbides formed in three morphologies: on twins within the martensite plates, in the matrix of twin-free areas of the martensite plates, and along the interfaces of the martensite plates. Chi-carbide(x), as identified by selected area diffraction (SAD), was associated with each carbide morphology in specimens tempered at 573 K. Cementite (0) together with chi-carbide was observed in specimens tempered at 623 K. Small amounts (about 2 pct) of retained austenite were observed by MES of specimens tempered at 523 K. The transformation of the 25 pct retained austenite in as-quenched specimens was related to theX-carbide formed at the martensite plate interfaces during tempering. The MES results also show the presence of κ-carbide in the specimen tempered at 523 K and yields parameters indicative of a mixture of κ and θ carbides for the specimens tempered at 573 K and 623 K. MES measurements of the magnetic transition temperatures of the carbides show diffuse transitions but suggest that κ is the dominant carbide in the tempering temperature range examined.  相似文献   

9.
Mössbauer Fe57 spectroscopy allows comparison of Fe?N and Fe?C interstitial solid solutions. The spectra of Fe?N retained austenite indicate that nitrogen atoms are randomly distributed on octahedral sites in the austenite and in the virgin martensite. On heating, austenite decomposes directly to the equilibrium phases α iron and Fe4N at temperatures above 160°C. Virgin martensite ages at room temperature by local ordering of nitrogen atoms. In that process, three new iron atom environments develop, characteristic of the Fe16N2 (α″) structure. However, the excessive width of the peaks indicate the perfect order of the Fe16N2 precipitate is not achieved, except after very long times. Further aging at 100°C leads to the complete decomposition of the virgin martensite to the discrete phases α iron and Fe16N2. This two phase structure is stable up to 160°C, above which the precipitation of Fe4N occurs. These results are in contrast to Fe?C data. Carbon atoms in retained austenite tend to be far apart in their octahedral sites, and this nonrandom distribution is inherited by the virgin martensite. Fe?C austenite decomposes by the formation of ∈ carbide below 160°C and precipitation of Fe3C above 180°C. The carbon atoms in virgin martensite agglomerate at room temperature and regions of ordered Fe4C are believed to result. Subsequently ∈ carbon is formed at 80°C and Fe3C precipitates above 160°C.1  相似文献   

10.
Fatigue crack propagation was studied for two intercritically tempered cryogenic steels, Fe-9Ni-0.1C and Fe-4Mn-0.15C, at both intermediate (stage II) and low (stage I, near threshold) stress intensity ranges. Propagation rates were determined for varying intercritical tempering times corresponding to varying amounts of retained austenite and untempered martensite. The results show that the heat treatments that optimize impact fracture properties in the nickel steel are also beneficial with respect to the fatigue crack propagation rate in stage I, while no beneficial effect beyond that attributable to carbon redistribution was observed for stage II. For the manganese steel, heat treatments leading to increased concentrations of retained austenite also increased the threshold stress even though no improvement in fracture toughness was observed. To clarify the origin of this improved behavior, the fracture surface was analyzed by Mössbauer Spectroscopy and Auger Electron Microprobe. The Mössbauer results indicated that the retained austenite in the crack path is transformed to martensite as was earlier shown in this laboratory for Charpy specimens. Auger composition analysis suggested a tendency for a stage I crack tip to avoid the mechanically induced brittle untempered martensite in the Fe-Mn steel, while no such preference was observed for stage II.  相似文献   

11.
Fatigue crack propagation was studied for two intercritically tempered cryogenic steels, Fe-9Ni-0.1C and Fe-4Mn-0.15C, at both intermediate (stage II) and low (stage I, near threshold) stress intensity ranges. Propagation rates were determined for varying intercritical tempering times corresponding to varying amounts of retained austenite and untempered martensite. The results show that the heat treatments that optimize impact fracture properties in the nickel steel are also beneficial with respect to the fatigue crack propagation rate in stage I, while no beneficial effect beyond that attributable to carbon redistribution was observed for stage II. For the manganese steel, heat treatments leading to increased concentrations of retained austenite also increased the threshold stress even though no improvement in fracture toughness was observed. To clarify the origin of this improved behavior, the fracture surface was analyzed by Mössbauer Spectroscopy and Auger Electron Microprobe. The Mössbauer results indicated that the retained austenite in the crack path is transformed to martensite as was earlier shown in this laboratory for Charpy specimens. Auger composition analysis suggested a tendency for a stage I crack tip to avoid the mechanically induced brittle untempered martensite in the Fe-Mn steel, while no such preference was observed for stage II.  相似文献   

12.
Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr- Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 °C or at 200 °C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreases with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to (1) a lower carbon content in the matrix reducing the retained austenite levels and (2) retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. The microplastic response of stable austenite-martensite composites may be modeled by a rule of mixtures. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation of austenite to martensite to balance the plastic strain accumulated in the austenite.  相似文献   

13.
The retained austenite content and carbon distribution in martensite were determined as a function of cooling rate and temper temperature in steel that contained 1.31 at. pct C, 3.2 at. pct Si, and 3.2 at. pct noniron metallic elements. Mössbauer spectroscopy, transmission electron microscopy (TEM), transmission synchrotron X-ray diffraction (XRD), and atom probe tomography were used for the microstructural analyses. The retained austenite content was an inverse, linear function of cooling rate between 25 and 560 K/s. The elevated Si content of 3.2 at. pct did not shift the start of austenite decomposition to higher tempering temperatures relative to SAE 4130 steel. The minimum tempering temperature for complete austenite decomposition was significantly higher (>650 °C) than for SAE 4130 steel (~300 °C). The tempering temperatures for the precipitation of transition carbides and cementite were significantly higher (>400 °C) than for carbon steels (100 °C to 200 °C and 200 °C to 350 °C), respectively. Approximately 90 pct of the carbon atoms were trapped in Cottrell atmospheres in the vicinity of the dislocation cores in dislocation tangles in the martensite matrix after cooling at 560 K/s and aging at 22 °C. The 3.2 at. pct Si content increased the upper temperature limit for stable carbon clusters to above 215 °C. Significant autotempering occurred during cooling at 25 K/s. The proportion of total carbon that segregated to the interlath austenite films decreased from 34 to 8 pct as the cooling rate increased from 25 to 560 K/s. Developing a model for the transfer of carbon from martensite to austenite during quenching should provide a means for calculating the retained austenite. The maximum carbon content in the austenite films was 6 to 7 at. pct, both in specimens cooled at 560 K/s and at 25 K/s. Approximately 6 to 7 at. pct carbon was sufficient to arrest the transformation of austenite to martensite. The chemical potential of carbon is the same in martensite that contains 0.5 to 1.0 at. pct carbon and in austenite that contains 6 to 7 at. pct carbon. There was no segregation of any substitutional elements.  相似文献   

14.
TRIP sheet steels typically consist of ferrite, bainite, retained austenite, and martensite. The retained austenite is of particular importance because its deformation‐induced transformation to martensite contributes to excellent combinations of strength and ductility. While information is available regarding austenite response in uniaxial tension, less information is available for TRIP steels with respect to the forming response of retained austenite in complex strain states. Therefore, the purpose of this work was to study the austenite transformation behaviour in different strain paths by determining the amount of retained austenite before and after forming. Forming experiments were performed on a high strength 0.19C‐1.63Si‐1.59Mn TRIP sheet steel 1.2 mm in thickness in two different strain conditions, uniaxial tension (ε1 = ‐2ε2) and balanced biaxial stretching (ε1 = ε2). Specimens were formed to strains ranging from zero to approximately 0.2 effective (von Mises) strain. Specimens were tested both longitudinally and transverse to the rolling direction in uniaxial tension, and subtle mechanical property differences were found. The volume fraction of austenite, determined with X‐ray diffraction subsequent to forming, was found to decrease with increasing strain for both forming modes. Some modification in the crystallographic texture of the ferrite was observed with increasing strain, in specimens tested in the balanced biaxial stretch condition. This trend was not evident in the uniaxial tensile test results. Slight differences were found in the transformation behaviour of the austenite when formed in different strain conditions. More austenite transformed in specimens tested parallel to the rolling direction than transverse to the rolling direction in uniaxial tension. The amount of austenite transformed during biaxial stretching was determined to be greater than the amount transformed in uniaxial tension for specimens tested transverse to the rolling direction at an equivalent von Mises strain. The amount of austenite that transformed in biaxial tension, however, was comparable to the amount of austenite that transformed in specimens tested longitudinal to the rolling direction in uniaxial tension.  相似文献   

15.
刘艳林 《钢铁》2016,51(4):53-58
 利用Formastor-FⅡ全自动相变仪模拟研究了一种Fe-0.24C-0.3Si-1.0Mn-0.56Cr-0.17Mo(质量分数,%)钢在冷却过程中的碳配分行为及其对马氏体和残余奥氏体的影响,用扫描电镜、透射电镜进行微观组织表征,用X射线衍射法和电子背散射衍射法测定残余奥氏体体积分数。结果表明,试验钢分别经末段慢冷和直接快冷工艺冷却后均获得马氏体+残余奥氏体两相组织,其中直接快冷工艺所得马氏体相对杂乱,尺寸较小,残余奥氏体体积分数较少;而末段慢冷工艺所得马氏体板条较长,且发生了碳的配分,残余奥氏体体积分数较多,以薄膜状分布在马氏体板条间,板条内部含有高密度位错。  相似文献   

16.
陈光辉  徐光  胡海江  刘曼  陈鑫 《钢铁》2021,56(2):110-116
 为了研究中碳高强贝氏体钢中的残余奥氏体体积分数在不同等温情况下的变化规律,通过X射线衍射试验、热模拟试验和扫描电子显微镜观察等,分析了等温淬火条件对中碳高强贝氏体钢中残余奥氏体体积分数和组织的影响。结果表明,最终残余奥氏体的体积分数受贝氏体相变和马氏体相变的共同影响。贝氏体相变量决定了未转变奥氏体的体积分数及其化学稳定性,从而影响随后的马氏体相变量及最终残余奥氏体体积分数。此外,随着相变温度的升高,开始由于贝氏体相变量逐渐减少,残余奥氏体体积分数先增加(300~350 ℃),随后由于马氏体相变量增加,残余奥氏体体积分数减少(350~400 ℃)。  相似文献   

17.
Austenite and martensite textures were studied in 18 pct Ni 350-maraging steel as a function of various degrees of cold rolling. The austenite phase in the samples was produced by repeated thermal cycling between ambient and 800 °C. The austenite phase thus formed was mechanically unstable and transformed to the martensite phase after 30 pct cold rolling. The texture developed as a result of cold rolling, and its effect upon microstructure and hardness has been studied.  相似文献   

18.
Effect of cryogenic treatment on the microstructure, hardening behavior and abrasion resistance of 14Cr2Mn2V high chromium cast iron (HCCI) subjected to subcritical treatment was investigated. The results show that cryogenic treatment after subcritical treatment can obviously improve the hardness and abrasion resistance of HCCI because abundant retained austenite is transformed into martensite and fine secondary carbides E(Fe, Cr)23 C6 ] precipitate. The amount of martensite and precipitated secondary carbide in HCCI experiencing subcritical treatment followed by cryogenic treatment was more than that experiencing the subcritical treatment followed by air cooling. When the abrasion resistance of HCCI reaches the maximum, its microstructure contains about 15 % retained austenite. Cryogenic treatment can further reduce the austenite content but the retained austenite cannot be transformed in to martensite completely.  相似文献   

19.
采用拉伸与测温试验同时进行的方法,将应力应变曲线与热能曲线相结合,动态研究热轧TRIP钢拉伸过程中的相变热.研究表明:热轧TRIP钢在拉伸过程中材料增加的热能由部分转变的塑性功和马氏体相变热组成,因此,拉伸过程中实际测得的试样热能高于由塑性功转变的热能.利用平均综合热能损失系数对低速拉伸的TRIP钢的热能进行补充,通过计算与推导,证实了试样在刚进入塑性变形时,一定数量的较不稳定残余奥氏体首先集中发生马氏体相变,随着应变的进一步加大,剩余的较稳定的残余奥氏体根据其稳定情况发生马氏体相变的数量逐渐减少,在试样均匀延伸结束前绝大部分残余奥氏体已转变为马氏体.结合相变热变化可动态描述热轧TRIP钢形变过程中马氏体相变的情况.  相似文献   

20.
采用CCT-AY-Ⅱ型钢板连续退火机模拟分析了退火时间对中锰TRIP钢0.1C-7Mn组织性能的影响规律.利用扫描电镜、透射电镜、电子背散射衍射和X射线能量色散谱等研究了不同工艺下制备的0.1C-7Mn钢的微观组织和成分,利用X射线衍射法测量了残留奥氏体量,利用拉伸试验测试了其力学性能.0.1C-7Mn钢在650℃保温3 min退火后获得最佳的综合力学性能,其强度为1329 MPa,总延伸率为21.3%,强塑积为28 GPa·%.分析认为,0.1C-7Mn钢的高塑性是由亚稳奥氏体的TRIP效应和超细晶铁素体共同提供的,而高强度是由退火冷却过程中奥氏体转变的马氏体和拉伸变形过程中TRIP效应转变的马氏体的强化作用造成的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号