首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The creep behavior and microstructure of powder metallurgy (PM) 15 vol.% silicon particulate-reinforced 2009 aluminum alloy (SiCp–2009 Al composite) and its matrix PM 2009 Al were investigated over six orders of magnitude of strain rate and at temperatures in the range 618–678 K. The results show that the creep behavior of PM 15% SiCp–2009 Al composite resembles that of PM 2009 Al with regard to (a) the variations in both the apparent stress exponent and the apparent activation energy for creep due to applied stress, (b) the value of the true stress exponent, (c) the value of the true activation energy for creep, (d) the interpretation of creep in terms of a threshold stress, and (e) the temperature dependence of threshold stress. This resemblance implies that deformation in the matrix governs deformation in the composite. Analysis of the creep data in terms of creep rate against an effective stress shows that the creep behaviors of the composite and unreinforced alloy are consistent with the operation of viscous glide creep at low stresses. A comparison between the creep data of the composite and those of the unreinforced matrix revealed that the composite exhibited more creep-resistant characteristics than its matrix over the entire range of applied stresses.  相似文献   

2.
The small punch (SP) creep test has distinct advantages in the creep property assessment of materials at elevated temperatures. However, there are few creep properties of Ti alloys obtained by the SP creep test in the current literature. In this paper, the SP creep behaviour of Ti60 alloy has been evaluated under various loads in the range 550–800 N over a temperature range 873–973 K. The SP creep curves obviously indicated the primary, secondary and tertiary stages of creep. The test results have been compared with those of conventional creep tests. The European Code of Practice (CoP) for Small Punch Testing, Dorn equation and Monkman–Grant relationship have also been used to analyse the results of the SP creep tests. The ratio of load of the SP creep tests to equivalent stress of conventional creep tests, the load exponent value of steady deflection rate and activation energy for creep deformation were estimated from the SP creep tests. In conclusion, it was found that dislocation creep may be the main mechanism that dominates the SP creep deformation of Ti60 alloy in the range of load and temperature.  相似文献   

3.
Abstract

The creep behaviour and the microstructural evolution of a 9Cr–Mo–Nb–V (T91) steel were extensively evaluated by means of short term constant load creep tests and TEM analysis. Statistical analysis of the microstructural data revealed that the precipitated phases M23 C6 (where M is a metal, mainly Cr or Fe) and MX (where M is Nb or V, and X is C and/or N) were subject to coarsening during creep exposure. The coarsening law and its dependence on applied stress were identified, and the model was used to predict the magnitude of the Orowan stress at the time corresponding to the minimum creep rate. The minimum creep rate dependence on applied stress at 873 K was described by incorporating the threshold stress concept in a power law with stress exponent n = 5. In the resulting phenomenological model, the strengthening effect of the dispersed phases was thus expressed by a threshold stress proportional to the Orowan stress.  相似文献   

4.
Creep behavior of Sn–9% Zn and Sn–8% Zn–3% Bi solder alloys was studied by impression, indentation, and impression-relaxation tests at room temperature (T > 0.6T m ) in order to evaluate the correspondence of the creep results obtained by different testing techniques, and to evaluate the effect of Bi on the creep response of the eutectic Sn–9Zn alloy. Stress exponent values were determined through these methods and in all cases the calculated exponents were in good agreement. The average stress exponents of 8.6 and 9.9, found respectively for the binary and ternary alloys, are close to those determined by room temperature conventional creep testing of the same materials reported in the literature. These exponents imply that dislocation creep is the possible mechanism during room temperature creep deformation of these alloys. The introduction of 3% Bi into the binary alloy enhanced the creep resistance due to both solid solutioning effect and sparse precipitation of Bi in the Sn matrix.  相似文献   

5.
The effect of strain rate and environment on the mechanical behavior at different temperatures of the Ni–19Si–3Nb–0.15B–0.1C alloy is investigated by atmosphere-controlled tensile testing under various conditions at different strain rates and different temperatures). The results reveal that the Ni–19Si–3Nb–0.15B–0.1C alloy exhibits ductile mechanical behavior (UTS ∼ 1250 MPa, ε ~ 14%) at temperatures below 873 K under different atmosphere conditions. However, the alloy without boron and carbon addition shows ductile mechanical behavior only when the sample is tested in vacuum. This indicates that the microalloying of boron and carbon does overcome the environmental embrittlement from water vapor at test temperatures below 873 K for the Ni–19Si–3Nb base alloy. However, the boron and carbon doped alloy still suffers from embrittlement associated with oxygen at a medium high temperature (i.e. 973 K). In parallel, both of the ultimate tensile strength and elongation exhibit quite insensitive response with respect to the loading strain rate when tests are held at temperatures below 873 K. However, the ultimate tensile strength exhibits high dependence on the strain rate in air at temperatures above 873 K, decreasing the ultimate tensile strength with decreasing strain rate.  相似文献   

6.
High-temperature tensile deformation of 6082-T4 Al alloy was conducted in the range of 623–773 K at various strain rates in the range of 5 × 10−5 to 2 × 10−2 s−1. Stress dependence of the strain rate revealed a stress exponent, n of 7 throughout the ranges of temperatures and strain rates tested. This stress exponent is higher than what is usually observed in Al–Mg alloys under similar experimental conditions, which implies the presence of threshold stress. This behavior results from dislocation interaction with second phase particles (Mg2Si). The experimental threshold stress values were calculated, based on the finding that creep rate is viscous glide controlled, based on creep tests conducted on binary Al–1Mg at 673 K, that gave n a value of 3. The threshold stress (σ o) values were seen to decrease exponentially with temperature. The apparent activation energy for 6082-T4 was calculated to be about 245 kJ mol−1, which is higher than the activation energy for self-diffusion in Al (Q d = 143 kJ mol−1) and for the diffusion of Mg in Al (115–130 kJ mol−1). By incorporating the threshold stress in the analysis, the true activation energy was calculated to be about 107 kJ mol−1. Analysis of strain rate dependence in terms of the effective stress (σ − σ o) using normalized parameters, revealed a single type of deformation behavior. A plot of normalized strain rate () versus normalized effective stress (σ − σ o)/G, on a double logarithmic scale, gave an n value of 3. Ehab A. El-Danaf—on leave from the Department of Mechanical Design and Production, College of Engineering, Cairo University, Egypt.  相似文献   

7.
Creep behavior of an advanced magnesium alloy AX41 (4 wt.% Al, 1 wt.% Ca, Mg balanced) was investigated in temperature interval from 343 to 673 K and stresses from 2 to 200 MPa. Compressive creep experiments with stepwise loading were used in order to obtain stress dependence of the creep rate in interval from 10−9 to 10−3 s−1 for a given temperature. All stress dependences can be well described by the Garofalo sinh relationship with natural exponent n = 5. An analysis of the parameters of this relationship has shown that lattice diffusion controls creep at all experimental conditions. While climb-controlled creep mechanism is decisive at lower stresses and higher temperatures, glide-controlled mechanisms act at higher stresses and lower temperatures. A typical power-law breakdown is observed at intermediate stresses and temperatures. __________ Translated from Problemy Prochnosti, No. 1, pp. 36–39, January–February, 2008.  相似文献   

8.
利用常应力拉伸蠕变试验法对体积分数为25%的硅酸铝短纤维(Al2O3-Si O2(sf))增强AZ91D镁基复合材料及其基体合金AZ91D在温度为473 K和573 K、外加应力为30~100 MPa下进行蠕变测试。根据应变和应变速率曲线,计算出复合材料的真应力指数、真蠕变激活能、真门槛应力、载荷转移因子和蠕变本构方程。TEM分析结果表明,复合材料蠕变后的门槛应力来源于短纤维表面上的MgO颗粒和Mg17Al12析出相对可动位错的钉扎作用,短纤维具有承载和传递载荷作用,从而提高了复合材料的抗蠕变性能。  相似文献   

9.
Abstract

The tensile creep and tensile-tensile cyclic creep behaviour of 2024/SiCp composite and its matrix alloy have been investigated and analysed at high temperature. It was found that the creep threshold stress of the composite may not be caused by SiCp alone: the matrix alloy also contributes to the threshold stress. The higher threshold stress of the composite compared with that of the matrix alloy can be explained in terms of load transfer in the composite and the value of threshold stress for the matrix alloy. A direct comparison between the composite and its matrix alloy indicates that only below a critical stress does the composite show a creep resistance higher than that of its matrix alloy. The two materials shown cyclic creep retardation in the tested stress range, cyclic creep showing a higher stress exponent and higher apparent activation energies in comparison with static creep. An analysis based on anelasticity is introduced to explain this result. The relationships between rupture lifetimes and applied stress, creep rate, and unloading amount show that the creep fracture mechanism is dominant in the present test condition.  相似文献   

10.
A comparison of results of small punch tests on miniaturized discs under a constant force with their simulation by means of FEM is presented. A heat-resistant steel of type CSN 41 5313 (EN 10CrMo9-10) was selected for our investigations. The small punch tests as well as the necessary conventional creep tests on massive specimens were performed at 873 K. For simulations, the Norton power-law and the exponential relationships were applied in the FEM model of the SPT arrangement. Parameters of both relationships were derived from stress dependences of minimum creep rate obtained from the conventional creep tests. While at higher loads the Norton power-law yields results more comparable with those obtained from experiments, at lower loads the exponential relationship gives better results. The investigation also confirms the simple relation between stress in conventional tests and force in small punch tests resulting in identical time to fracture of both types of tests. __________ Translated from Problemy Prochnosti, No. 1, pp. 32–35, January–February, 2008.  相似文献   

11.
This paper examines the effect of severe plastic deformation on creep behaviour of a Ti–6Al–4V alloy. The processed material with an ultrafine-grained (UFG) structure (d ≈ 150 nm) was prepared by multiaxial forging. Uniaxial constant stress compression and constant load tensile creep tests were performed at 648–698 K and at stresses ranging between 300 and 600 MPa on the UFG processed alloy and, for comparison purposes, on its coarse-grained (CG) state. The values of the stress exponents of the minimum creep rate n and creep activation energy Q c were determined. Creep behaviour was also investigated by nanoindentation method at room temperature under constant load. The microstructure was examined by transmission electron microscopy and scanning electron microscope equipped with an electron back scatter diffraction unit. The results of the uniaxial creep tests showed that the minimum creep rates of the UFG specimens are significantly higher in comparison with those of the CG state. However, the differences in the minimum creep rates of both states of alloy strongly decrease with increasing values of applied stress. The CG alloy exhibits better creep resistance than the UFG one over the stress range used; the minimum creep rate for the UFG alloy is about one to two orders of magnitude higher than that of the CG alloy. The indentation creep tests showed that annealing had little effect on the creep behaviour in UFG Ti alloy at room temperature.  相似文献   

12.
The power law-creep behavior of superplastic Sn–40Pb–2.5Sb alloys with different grain sizes has been investigated at room temperature. Stress exponent values for these alloys have been determined by indentation creep, conventional creep and uniaxial tension tests in order to evaluate the correspondence of indentation creep results with conventional tests. In all cases, the indentation results were in good agreement with each other and with those of the tensile and conventional creep tests. The average stress exponent values of about 2.6 and 3.0 corresponding to the strain rate sensitivity (SRS) indices of 0.33–0.39, depending on the grain size of the materials, indicate that the grain boundary sliding is the possible mechanism during creep deformation of Sn–Pb–Sb alloys. Within limits, the indentation tests are thus considered useful to acquire information on the creep behavior of small specimens of these soft tin–lead–antimony alloys at room temperature. It is also demonstrated that the indentation creep test provides a convenient method to measure SRS and thereby to assess the ability of a material to undergo superplastic deformation.  相似文献   

13.
Rene 80 samples were creep–rupture tested in air between 1144 and 1255 K at various stress levels. The mean stress exponent, n, and the mean activation energy for creep were calculated from the experimental results. The accelerated creep life of the alloy was evaluated by using iso-stress parametric equations and Monkman–Grant method.  相似文献   

14.
The 42.1 vol. pct TiC/AZ91D magnesium-matrix composites with interpenetrating networks were fabricated by in-situ reactive infiltration process. The compressive creep behavior of as-synthesized composites was investigated at temperature ranging from 673 to 723 K under loads of 95-108 MPa. For a comparative purpose,the creep behavior of the monolithic matrix alloy AZ91D was also conducted under loads of 15-55 MPa at 548-598 K. The creep mechanisms were theoretically analyzed based on the power-law relation. The results showed that the creep rates of both TiC/AZ91D composites and AZ91D alloy increase with increasing the temperature and load. The TiC/AZ91D composites possess superior creep resistance as compared with the AZ91D alloy. At deformation temperature below 573 K, the stress exponent n of AZ91D alloy approaches theoretical value of 5, which suggests that the creep process is controlled by dislocation climb. At 598 K, the stress exponentof AZ91D is close to 3, in which viscous non-basal slip deformation plays a key role in the process of creep deformation. However, the case differs from that of AZ91D alloy when the stress exponent n of TiC/AZ91D composites exceeds 9, which shows that there exists threshold stress in the creep process of the composites, similar to other types of composites. The average activation energies for the creep of the AZ91D alloy and TiC/AZ91D composites were calculated to be 144 and 152 k J/mol, respectively. The existence of threshold stress in the creep process of the composites leads to an increase in activation energy for creep.  相似文献   

15.
Nanoindentation creep tests in Ni thin films with 3,000 nm thickness were performed with different loading times (5, 10, 20, 30, and 50 s) under the holding load 5,000 μN and holding time 30 s to investigate the dependence of the indentation creep behavior on the loading rate. The results show that significant indentation loading rate sensitivity on stress exponent and hardness was found, which shows that the stress exponent increases with indentation loading rate. In contrast, the elastic modulus decreases slightly (more or less 1%) due to a longer loading time. Based on the experimental results, we infer that the creep phenomena observed were probably induced by plasticity.  相似文献   

16.
The tensile-creep and creep–fracture behavior of as-cast Mg–11Y–5Gd–2Zn–0.5Zr (wt%) (WGZ1152) was investigated at temperatures between 523 and 598 K (0.58–0.66T m) and stresses between 30 and 140 MPa. The creep stress exponent was close to five, suggesting that dislocation creep was the dominant creep mechanism. The activation energy for creep (233 ± 18 kJ/mol) was higher than that for self-diffusion in magnesium, and was believed to be associated with cross-slip, which was the dominant thermally-aided creep mechanism. This was consistent with the surface observations, which suggested non-basal slip and cross-slip were active at 573 K. The minimum creep rate and fracture time values fit the original and modified Monkman–Grant models. In situ creep experiments highlighted the intergranular cracking evolution. The creep properties and behavior were compared with those for other high-temperature creep-resistant Mg alloys such as WE54-T6 and HZ32-T5.  相似文献   

17.
The hardness of Al–5wt%Zn (alloy A) and Al–5wt%Zn–0.25wt%In (alloy B) was measured at room temperature for samples heat treated in the range 300–453 K and dwell times in the range 30–300 s under 50 gm load. Softening was observed for all the samples and the hardness decreased with increasing temperature and/or dwell time. Hardness drop was larger for alloy (B), which in general showed higher hardness than alloy (A). The stress exponent n increased with increasing temperature and showed high values falling in the power law breakdown region. The parameters deduced from the analysis of X-rays data and micrographs were found to be consistant with the calculated mechanical data.  相似文献   

18.
Abstract

Tensile creep of a Fe–16 wt-%Al–0·5 wt-%C alloy was investigated over a temperature range of 773 to 873 K and stress range of 80 to 200 MPa. Creep curves exhibited very limited primary and secondary creep regimes. An extended tertiary creep regime was observed for all the test conditions. Stress dependence of minimum creep rate can be represented by a power-law equation with stress exponents being in the range 4 to 5. The activation energy for creep was found to be ~340 kJ mol?1. The observed stress exponent and activation energy for creep suggest that creep is controlled by dislocation climb. Creep fracture in Fe3Al–C alloy is predominantly by transgranular ductile mode by nucleation, growth and coalescence of microvoids formed at FeAlC0·5 particle/matrix interface by decohesion as well as fracture of elongated particles. Extended tertiary creep observed in the alloy was analysed in the light of the mechanisms proposed for nickel based superalloys.  相似文献   

19.
Even though several EMS (Electronic manufacturing services) companies are currently producing “lead free” products, a general notion of apprehension still exists in the industry, primarily due to the lack of sufficient mechanical reliability data supporting the use of lead free alloys. The current study was an effort to generate an understanding of the mechanisms of creep deformation in monolithic and composite (Ag and Cu reinforced) Sn–3.5Ag and Sn–3.0Ag–0.5Cu lead free alloys in the high stress high temperature regime. Small volume solder samples were reflowed using a custom built computer controlled resistance furnace. Impression creep testing was employed to determine the activation energy and stress exponent. A careful analysis of the collected data revealed the underlying creep mechanisms and the following conclusions could be made. Both Sn–3.5Ag and Sn–3.0Ag–0.5Cu exhibited higher creep resistance as compared to the eutectic tin–lead solder under all tested conditions, with the ternary lead free alloy marginally outperforming the binary lead free alloy. Composite solders performed better as compared to monolithic solders. Furthermore, Cu reinforced solders demonstrated higher creep resistance as compared to Ag reinforced solders.  相似文献   

20.
The creep behavior of AI203.SIO2 fiber reinforced ZL109 composites has been investigated at four temperatures ranging from 553 to 623 K. The results show high stress exponent and highapparent creep activation energy. A good correlation between the normalized creep rate and normalized effective stress means that the true stress exponent of minimum creep strain rate of the composite is very close to 5, and the minimum creep strain rate is matrix lattice diffusion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号